Open main menu

Page:Popular Science Monthly Volume 56.djvu/696

This page has been proofread, but needs to be validated.

Classification of compounds became imperatively necessary, and to that all speculation was subordinated. In 1842 Schiel found that the alcohols formed a regular series, with progressive variation in their properties; Dumas observed a similar relation among the fatty acids, and so something like order began to appear.

In 1843 Charles Gerhardt proposed to use the law of Avogadro as a basis for the determination of atomic weights. This involved the doubling of many existing values, especially the atomic weights assigned to oxygen, carbon, and sulphur. At first the proposition was violently opposed, and even ridiculed, but by slow degrees it managed to make its way, although it was not until after 1858 that it began to find anything like general acceptance. In that year Cannizzaro put forth his revision of the atomic weights, adjusted to accord with physical laws, and a new era in chemistry began. The modern theories of chemistry became possible, and the many researches in which they had been foreshadowed received a clearer meaning. Cannizzaro did not stand alone; his work was but the capstone of a structure which had long been growing; Liebig, Dumas, Laurent, Gerhardt, Wurtz, Graham, Williamson, and Frankland were among the builders. But at last chemical and physical evidence were brought into full convergence, and each gave emphasis to the other.

During the formative period of the new doctrines, between 1840 and 1858, many discoveries were made which helped toward the final consummation. Even earlier than this the researches of Graham upon the phosphoric acids had familiarized chemists with the idea that different substances might have very different combining powers, and other polybasic acids were found to exist among organic compounds. The discovery by Wurtz, in 1849, that the hydrogen of ammonia was replaceable by organic radicles, forming the compound ammonias or amines, was a logical extension of the theory of substitutions; and the recognition at about the same time, by Hofmann, of ammonia as a distinct type upon which many other substances could be modeled, was another long step forward. In 1851 Williamson argued that nearly all inorganic and many organic molecules could be represented as analogous in structure to water, and a year later, as a result of his researches upon the organo-metallic bodies—zinc ethyl, tin ethyl, etc.—Frankland expressed the belief that every elementary atom has a definite combining power which limits the number of other atoms capable of direct union with it. This was the theory of valence in its first and simplest form, undeveloped to its consequences, but unmistakably clear. To carbon compounds in general it was yet to be applied.