Open main menu

Page:Popular Science Monthly Volume 57.djvu/360

This page has been proofread, but needs to be validated.

the perihelion; and the climatic peculiarities of the two hemispheres, so far as they depend on planetary motions, are periodically reversed. The time in which the cycle of change is completed, or the period of the rhythm, is not always the same, hut averages 21,000 years. It is commonly called the precessional period.[1]

Assuming that the climates of many parts of the earth are subject to a secular cycle, with contrasted phases every 10,500 years, we should expect to find records of the cycle in the sediments. A moist climate would tend to leach the calcareous matter from the rock, leaving an earthy soil behind, and in a succeeding drier climate the soil would be carried away; and thus the adjacent ocean would receive first calcareous and then earthy sediments. The increase of glaciers in one hemisphere would not only modify adjacent sediments directly, but, by adding matter on that side, would make a small difference in the position of the earth's center of gravity. The ocean would move somewhat toward the weighted hemisphere, encroaching on some coasts and drawing down on others; and even a small change of that sort would modify the conditions of erosion and deposition to an appreciable extent in many localities.

Blytt ascribed to this astronomic cause the alternations of bog and forest in Scandinavia, as well as other sedimentary rhythms observed in Europe; and it has seemed to me competent to account for certain alternations of strata in the Cretaceous formations of Colorado. Croll used it to explain interglacial epochs, and Taylor has recently applied it to the moraines of recession.

The remaining astronomic rhythm of geologic import is the variation of eccentricity. At the present time our greatest distance from the sun exceeds our least distance by its thirtieth part, but the difference is not usually so small as this. It may increase to the seventh part of the whole distance, and it may fall to zero. Between these limits it fluctuates in a somewhat irregular way, in which the property of periodicity is not conspicuous. The effect of its fluctuation is inseparable from the precessional effect, and is related to it as a modifying condition. When the eccentricity is large the precessional rhythm is emphasized; when it is small the precessional effect is weak.

The variation of eccentricity is connected with the most celebrated of all attempts to determine a limited portion of geologic time. In the elaboration of the theory of the Ice age which bears his name, Croll correlated two important epochs of glaciation with epochs of high eccentricity computed to have occurred about 100,000 and 210,000 years ago. As the analysis of the glacial history progresses, these correlations will

  1. Strictly speaking, 21,000 years is the period of the precession of the equinoxes as referred to perihelion; but the perihelion is itself in motion. As referred to a fixed star the precession of the equinoxes has an average period of about 25,700 years.