Page:Popular Science Monthly Volume 57.djvu/366

This page has been proofread, but needs to be validated.
356
POPULAR SCIENCE MONTHLY.

was that of a strong, black, circular line, opening out with terrific speed from the point of explosion as a center. It was impossible to judge of the thickness of the shadow; it may have been three feet, or it may have been more at first, and have gradually become less in thickness, or possibly in depth of shade."

Unfortunately, Professor Boys's apparatus did not work satisfactorily, but a most interesting series of pictures was secured by the kinematograph. This instrument had been constructed especially for taking ipctures at a very high rate of speed, viz. . eighty exposures a second, or four times the usual number. The sound wave appears in the first dozen pictures as a hazy ring of light, opening out from the center of explosion. The ring, though not very conspicuous when the pictures are viewed singly, becomes a striking object when they are projected in rapid succession on the screen. We see the rush of smoke along the ground to the box in which the explosion is confined (the smoke of the quick fuse); then comes the burst of the explosion with such startling reality that we involuntarily jump. The image of the sound wave flies out in the form of a white ring, and is gone in a moment; and there remain only the rolling clouds of smoke. It is interesting to observe the development of the explosion by running the machine quite slowly, and by thus magnifying time to follow the changes which ordinarily occur in such rapid succession that the eye is unable to perceive them.

Of this series of pictures, Professor Boys says: The "kinematograph fails to show any black ring; and this is not surprising, as with the exposure of about one one hundredth of a second the shadow would have to be at least eleven feet thick in order that some part should remain obscured during the whole exposure. As a fact, there is clearly seen a circular light shading, which does—so far as one can judge from the supposed rate of working and the known distances—expand at about the same rate as the observed shadow, but it is lighter than the ground and shaded, instead of being dark and sharp, as seen by the eye."

So much for the visibility of sound under ordinary conditions. In the laboratory, by means of an optical contrivance due to the German physicist Toepler, we can secure a means of illumination so sensitive that the warm air rising from a person's hand appears like dense black smoke. Moreover, since we are working on a small scale, we can use the electric spark as the source of light, and dispense with the photographic shutter. This is a great advantage, for the time of the exposure is, under these conditions, only about one fifty-thousandth of a second, during which time the sound wave will move scarcely a quarter of an inch. During the past year I have made a very complete series of photographs of sound waves, which illustrate in a most beautiful manner the fundamental principles of wave motion. It is not practicable to give here a full description of the apparatus used, but a brief outline may