Page:Popular Science Monthly Volume 6.djvu/291

This page has been validated.
THE FUTURE OF CHEMISTRY.
277

with a certain odor, color, melting-point, and crystalline form; and there the description ends. No thought of ascertaining its other physical properties ever seems to enter the head of the discoverer. Doubtless all this work has a value; some of it has already led to results of great importance; still it is not in any such direction that chemistry is to look for its chief future growth. The same amount of effort, otherwise expended, would yield much richer returns. Unfortunately, an inferior line of research has become fashionable, and scientific investigators, like all other people, are more or less subject to fashion. It must be plain to every one, however, that the work of chemistry amounts to a good deal more than merely to obtain, formulate, and classify new compounds. It is necessary to study not only the bodies themselves, but also the laws involved in their formation and decay. We should seek to understand what physical forces are operative in each reaction, and in what quantities. No chemical change can occur unattended by the phenomena of either heat, light, or electricity. To-day, little is done save to investigate the results of chemical reactions. Surely the phenomena of the reactions themselves ought to be studied a little more. Chemistry would not lose much were no new compounds to be described for ten years to come, if chemists might only be induced to examine more closely the substances already known.

These few words of well-meant criticism may very properly lead us to the main subject of this paper: What is the future of chemistry? In what direction must the science look for its grandest development? What grand generalizations may we expect, and what steps should be taken to lead up to them? As the past is always prophetic of the future, it is evident that we must pay some attention to the former growth of chemistry before we can safely predict what is to come. If we would be thorough, we ought to do even more, and extend our view across the limits of this particular science into the fields of other sciences closely connected with it. For present purposes, however, we need consider, in conjunction with chemistry, only its twin-sister, physics. The two sciences are so closely intertwined that neither can be studied alone. Progress in either, in the long-run, means progress in both. Upon the border-land between the two our attention must be fixed.

Upon studying the history of chemistry, we cannot but be struck by the changes which have occurred both in the form and in the significance of chemical notation. There we have to deal with a symbolism so peculiar that it represents in its modern form several very important stages of scientific growth. Every great change in chemical thought is mirrored by some modification in this symbolic system. At first a formula represented the composition by weight of a substance, and embodied certain theoretical conceptions with which we have, for present purposes, nothing to do. Soon an extension of our