Page:Popular Science Monthly Volume 61.djvu/29

This page has been proofread, but needs to be validated.

vibrating electric particle attached to the atom which is the cause of eye-affecting radiation or light.

Lorentz, Helmholtz, Thomson and others have shown that such a conception of atomic structure enables us to explain many electro-optic phenomena which are inexplicable on any other theory. Maxwell's theory that electric and magnetic effects are due to strains and stresses in the æther, rendered an intelligible account of electric phenomena, so to say, in empty space, and its verification by Hertz placed on a firm basis the theory that the agencies we call electric and magnetic force are affections of the æther. But the complications introduced by the presence of matter in the electric and magnetic fields presented immense difficulties which Maxwell's theory was not able to overcome.

The electronic theory of electricity, which is an expansion of an idea originally due to Weber, does not invalidate the ideas which lie at the base of Maxwell's theory, but it supplements them by a new conception, viz., that of the electron or electric particle as the thing which is moved by electric force and which in turn gives rise to magnetic force as it moves. The conception of the electron as a point or small region towards which lines of strain in the æther converge, necessitates the correlative motion of positive and negative electrons. We are then led to ask whether the atom is not merely a collocation of electrons. If so, all mechanical and material effects must be translated into the language of electricity. We ought not to seek to create mechanical explanations of electrical phenomena, but rather electrical ones of mechanical effects. The inertia of matter is simply due to the inductance of the electron, and ultimately to the time element which is involved in the creation of æther strain in a new place. All the facts of electricity and magnetism are capable of being restated in terms of the electron idea. All chemical changes are due to the electric forces brought into existence between atoms which have gained or lost electrons. If moving electrons constitute an electric current, then electrons in rotation are the cause of magnetic effects. In optics it is capable of giving a consistent explanation of dispersion, absorption and anomalous dispersion and the relation of the index of refraction to the dielectric constant. A scientific hypothesis, with this wide embrace, which opens many closed doors and enables us to trace out the hidden connection between such various departments of physical phenomena, is one which must continue to attract investigators. Physical enquirers are at present, however, groping for guiding facts in this difficult field of investigation, but we have confidence that mathematical and experimental research will in due time bring the reward of greater light.