Page:Popular Science Monthly Volume 66.djvu/40

This page has been proofread, but needs to be validated.
36
THE POPULAR SCIENCE MONTHLY.

vance knowledge materially. I would suggest the preparation of pure compounds of nitrogen, such as salts of hydrazine, methylanine, etc., and their careful analysis; and also the accurate determination of the density and analysis of such gaseous compounds of nitrogen as nitric oxide and peroxide. I have just heard from my former student, W. E. W. Gray, that he has recovered Stas's number by combining 2NO with O2; while the density of NO leads to the lower value for the atomic weight of nitrogen.

The question of the atomic weight of tellurium appears to be settled, at least so far as its position with regard to the generally accepted atomic weight of iodine is concerned; recent determinations give the figures 127.5 (Gutbier), 127.6 (Pellini), and 127.9 (Köthner). But is that of iodine as accurately known? It would appear advisable to revise the determination of Stas, preparing the iodine preferably from an organic compound, such as iodoform, which can be produced in a high state of purity. The heteromorphism of selenates and tellurates, too, has recently been demonstrated; and it may be questioned whether these elements should both belong to the same group.

The rare earths still remain a puzzle. Their number is increasing yearly, and their claim to individuality admits of less and less dispute. What is to be done with them? Are they to be grouped by themselves as Brauner and Steele propose? If so, how is their connection with the other elements to be explained? Recent experiments in my laboratory have convinced me that in the case of thorium, at least, ordinary tests of purity such as fine crystals, constant subliming point, etc., do not always indicate homogeneity; or else that we are sadly in want of some analytical method of sufficient accuracy. The change of thorium into thorium X is perhaps hardly an explanation of the divergencies; yet it must be considered; but of this, more anon.

To turn next to another problem closely related to the orderly arrangement of the elements—that of valency—but little progress can be chronicled. The suggestions which have been made are speculative, rather than based on experiment. The existence of many peroxidized substances, such as percarbonates, perborates, persulphates and of crystalline compounds of salts with hydrogen peroxide, makes it difficult to draw any indisputable conclusions as regards valency from a consideration of oxygen compounds. Moissan's brilliant work on fluorides, however, has shown that SF6 is capable of stable existence, and this forms a strong argument in support of the hexad character of sulphur. The tetravalency of oxygen, under befitting conditions, too, is being acknowledged, and this may be reconciled with the existence of water of crystallization, as well as of the per-salts already mentioned. The adherence of ammonia to many chlorides, nitrates, etc., points to the connecting link being ascribable to the pentavalency of nitrogen; and it might be worth while investigating similar compounds