Page:Popular Science Monthly Volume 67.djvu/20

This page has been proofread, but needs to be validated.
THE POPULAR SCIENCE MONTHLY.

rate of evolution of heat from radium was unaltered by plunging the radium into liquid air or liquid hydrogen.

It seemed probable that the evolution of heat by radium was directly connected with its radioactivity and the experiments of Rutherford and Barnes proved this to be the case. The heating effect of a quantity of radium bromide was first determined. The emanation was then completely driven off by heating the radium, and condensed in a small glass tube by means of liquid air. After removal of the emanation, the heat evolution of the radium in the course of about three hours fell to a minimum corresponding to one quarter of its original value, and then slowly increased again, reaching its original value after an interval of about one month. The heat emission from the emanation tube at first increased with the time, rising to a maximum value about three hours after its introduction. It then slowly decreased according to an exponential law with the time, falling to half value in about four days.

The curve expressing the recovery from its minimum of the heating effect of radium is complementary to the curve expressing the diminution of the heating effect of the emanation tube with time. The curves of decay and recovery agree within the limit of experimental error with the corresponding curves of decay and recovery of the activity of radium when measured by the α rays. Since the minimum activity of radium, measured by the a rays, after the emanation has been removed is only one quarter of the maximum activity, these results indicate that the heating effect of radium is proportional to its activity measured by the α rays. It is not proportional to the activity measured by the β or γ rays, since the β or γ ray activity of radium almost completely disappears some hours after removal of the emanation.

These results have been confirmed by further observations of the distribution of the heat emission between the emanation and the successive products which arise from it. If the emanation is left for several hours in a closed tube, its activity measured by the electric method increases to about twice its initial value. This is due to the 'excited activity' or in other words to the radiations from the active matter deposited on the walls of the tube by the emanation. The activity of this deposit has been very carefully analyzed, and the results show that the matter deposited by the emanation breaks up in three successive and well marked stages. For convenience, these successive products of the emanation will be termed radium A, radium B and radium C. The time T taken for each of these products to be half transformed and the radiations from each product are shown in the following table: