Page:Popular Science Monthly Volume 69.djvu/204

This page has been proofread, but needs to be validated.
200
THE POPULAR SCIENCE MONTHLY

But it would not be the same had we used concrete images, had we, for example, considered this function as an electric potential; it would have been thought legitimate to affirm that electrostatic equilibrium can be attained. Yet perhaps a physical comparison would have awakened some vague distrust. But if care had been taken to translate the reasoning into the language of geometry, intermediate between that of analysis and that of physics, doubtless this distrust would not have been produced, and perhaps one might thus, even to-day, still deceive many readers not forewarned.

Intuition, therefore, does not give us certainty. This is why the evolution had to happen; let us now see how it happened.

It was not slow in being noticed that rigor could not be introduced in the reasoning unless first made to enter into the definitions. For the most part the objects treated of by mathematicians were long ill defined; they were supposed to be known because represented by means of the senses or the imagination; but one had only a crude image of them and not a precise idea on which reasoning could take hold. It was there first that the logicians had to direct their efforts.

So, in the case of incommensurable numbers. The vague idea of continuity, which we owe to intuition, resolved itself into a complicated system of inequalities referring to whole numbers.

By that means the difficulties arising from passing to the limit, or from the consideration of infinitesimals, are finally removed. To-day in analysis only whole numbers are left or systems, finite or infinite, of whole numbers bound together by a net of equality or inequality relations. Mathematics, as they say, is arithmetized.

III.

A first question presents itself. Is this evolution ended? Have we finally attained absolute rigor? At each stage of the evolution our fathers also thought they had reached it. If they deceived themselves, do we not likewise cheat ourselves?

We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary. To designate this something else we have no word other than intuition. But how many different ideas are hidden under this same word?

Compare these four axioms: (1) Two quantities equal to a third are equal to one another; (2) if a theorem is true of the number 1 and if we prove that it is true of if true for then will it be true of all whole numbers; (3) if on a straight the point is between