Page:Popular Science Monthly Volume 69.djvu/206

This page has been proofread, but needs to be validated.
202
THE POPULAR SCIENCE MONTHLY

For example, I seek to show that some property pertains to some object whose concept seems to me at first indefinable, because it is intuitive. At first I fail or must content myself with approximate proofs; finally I decide to give to my object a precise definition, and this enables me to establish this property in an irreproachable manner.

"And then," say the philosophers, "it still remains to show that the object which corresponds to this definition is indeed the same made known to you by intuition; or else that some real and concrete object whose conformity with your intuitive idea you believe you immediately recognize corresponds to your new definition. Only then could you affirm that it has the property in question. You have only displaced the difficulty."

That is not exactly so; the difficulty has not been displaced, it has been divided. The proposition to be established was in reality composed of two different truths, at first not distinguished. The first was a mathematical truth, and it is now rigorously established. The second was an experimental verity. Experience alone can teach us that some real and concrete object corresponds or does not correspond to some abstract definition. This second verity is not mathematically demonstrated, but neither can it be, no more than can the empirical laws of the physical and natural sciences. It would be unreasonable to ask more.

Well, is it not a great advance to have distinguished what long was wrongly confused? Does this mean that nothing is left of this objection of the philosophers? That I do not intend to say; in becoming rigorous, mathematical science takes a character so artificial as to strike every one; it forgets its historical origins; we see how the questions can be answered, we no longer see how and why they are put.

This shows us that logic is not enough; that the science of demonstration is not all science and that intuition must retain its role as complement, I was about to say, as counterpoise or as antidote of logic.

I have already had occasion to insist on the place intuition should hold in the teaching of the mathematical sciences. Without it young minds could not make a beginning in the understanding of mathematics; they could not learn to love it and would see in it only a vain logomachy; above all, without intuition they would never become capable of applying mathematics. But now I wish before all to speak of the role of intuition in science itself. If it is useful to the student, it is still more so to the creative scientist.

V.

We seek reality, but what is reality? The physiologists tell us that organisms are formed of cells; the chemists add that cells themselves are formed of atoms. Does this mean that these atoms or these