Page:Popular Science Monthly Volume 69.djvu/322

This page has been proofread, but needs to be validated.
318
THE POPULAR SCIENCE MONTHLY

ment; it might be contradicted by it if the results of different measurements were not concordant. We should think ourselves fortunate that this contradiction has not happened and that the slight discordances which may happen can be readily explained.

The postulate, at all events, resembling the principle of sufficient reason, has been accepted by everybody; what I wish to emphasize is that it furnishes us with a new rule for the investigation of simultaneity', entirely different from that which we have enunciated above.

This postulate assumed, let us see how the velocity of light has been measured. You know that Roemer used eclipses of the satellites of Jupiter, and sought how much the event fell behind its prediction. But how is this prediction made? It is by the aid of astronomic laws, for instance Newton's law.

Could not the observed facts be just as well explained if we attributed to the velocity of light a little different value from that adopted, and supposed Newton's law only approximate? Only this would lead to replacing Newton's law by another more complicated. So for the velocity of light a value is adopted, such that the astronomic laws compatible with this value may be as simple as possible. When navigators or geographers determine a longitude, they have to solve just the problem we are discussing; they must, without being at Paris, calculate Paris time. How do they accomplish it? They carry a chronometer set for Paris. The qualitative problem of simultaneity is made to depend upon the quantitative problem of the measurement of time. I need not take up the difficulties relative to this latter problem, since above I have emphasized them at length.

Or else they observe an astronomic phenomenon, such as an eclipse of the moon, and they suppose that this phenomenon is perceived simultaneously from all points of the earth. That is not altogether true, since the propagation of light is not instantaneous; if absolute exactitude were desired, there would be a correction to make according to a complicated rule.

Or else finally they use the telegraph. It is clear first that the reception of the signal at Berlin, for instance, is after the sending of this same signal from Paris. This is the rule of cause and effect analyzed above. But how much after? In general, the duration of the transmission is neglected and the two events are regarded as simultaneous. But, to be rigorous, a little correction would still have to be made by a complicated calculation; in practise it is not made, because it would be well within the errors of observation; its theoretic necessity is none the less from our point of view, which is that of a rigorous definition. From this discussion, I wish to emphasize two things: (1) The rules applied are exceedingly various. (2) It is difficult to separate the qualitative problem of simultaneity from the quantitative problem of