Page:Popular Science Monthly Volume 69.djvu/405

This page has been proofread, but needs to be validated.
THE VALUE OF SCIENCE
401

after all to proclaim that they deceive themselves, that their straight is not the true straight, if we still are unwilling to admit that such an affirmation has no meaning, at least we must confess that these people have no means whatever of recognizing their error.

2. Qualitative Geometry

All that is relatively easy to understand, and I have already so often repeated it that I think it needless to expatiate further on the matter. Euclidean space is not a form imposed upon our sensibility, since we can imagine non-Euclidean space; but the two spaces, Euclidean and non-Euclidean, have a common basis, that amorphous continuum of which I spoke in the beginning. From this continuum we can get either Euclidean space or Lobachevskian space, just as we can, by tracing upon it a proper graduation, transform an ungraduated thermometer into a Fahrenheit or a Réaumur thermometer.

And then comes a question: Is not this amorphous continuum that our analysis has allowed to survive a form imposed upon our sensibility? If so, we should have enlarged the prison in which this sensibility is confined, but it would always be a prison.

This continuum has a certain number of properties, exempt from all idea of measurement. The study of these properties is the object of a science which has been cultivated by many great geometers and in particular by Riemann and Betti and which has received the name of analysis situs. In this science abstraction is made of every quantitative idea and, for example, if we ascertain that on a line the point B is between the points A and C, we shall be content with this ascertainment and shall not trouble to know whether the line ABC is straight or curved, nor whether the length AB is equal to the length BC, or whether it is twice as great.

The theorems of analysis situs have, therefore, this peculiarity that they would remain true if the figures were copied by an inexpert draftsman who should grossly change all the proportions and replace the straights by lines more or less sinuous. In mathematical terms, they are not altered by any 'point-transformation' whatsoever. It has often been said that metric geometry was quantitative, while projective geometry was purely qualitative. That is not altogether true. The straight is still distinguished from other lines by properties which remain quantitative in some respects. The real qualitative geometry is, therefore, analysis situs.

The same questions which came up apropos of the truths of Euclidean geometry, come up anew apropos of the theorems of analysis situs. Are they obtainable by deductive reasoning? Are they disguised conventions? Are they experimental verities? Are they the