Open main menu

Page:Popular Science Monthly Volume 72.djvu/342

This page has been proofread, but needs to be validated.
338
POPULAR SCIENCE MONTHLY

of the blood, and the plants and animals in the lake. As is the case in the animal, the respiratory gases are absorbed and transmitted to the living structures by means of the unorganized fluid. It is my purpose to trace in outline the history of these processes and their result upon the activity of the lake.

The respiration of the lake, like that of the higher animal, may be divided into external and internal respiration. By the former we understand the adsorption of certain gases from the air and the return of other gases to it, as well as the processes by which this exchange is effected. We include in it also the methods by which the gases are distributed in the lake and conveyed to and from the surface of the water, which takes them from the atmosphere and gives them back to it. By internal respiration we mean the gaseous exchanges which take place in the lake itself, between its various organisms and the water surrounding them. With these exchanges come the chemical processes by which the character of the gases is altered or new gases manufactured, in the course of the vital activities of the inhabitants of the lake.

The external respiration of the lake closely resembles that of the organism. The lake absorbs oxygen, carbon dioxide and nitrogen from the atmosphere, and returns to it nitrogen, carbon dioxide and sometimes other gases. The nitrogen absorbed by the lake, like that taken in by an animal, has very little or nothing to do with the vital processes. In autumn, as the lake cools, larger amounts of nitrogen are absorbed, according to the general law of absorption of gases. As the lake warms during the summer season, the capacity for holding gases in absorption becomes smaller and some of the nitrogen is lost. This process is a purely physical one and has apparently no influence on the life of any of the organisms whose home is in the water.

The relation of the oxygen to life is, however, far different, and the processes of external respiration are of prime importance to the living beings of the lake. Speaking roughly, and in terms of our comparison, we may say that an inland lake is an organism which takes one full inspiration in the fall, and another, less complete, in the early spring; that during the winter it does not breathe at all and during the summer has only a very shallow and imperfect respiration. As the lake cools in the fall the temperature becomes uniform from top to bottom at a date which will vary from late September to late November or early December, according to the area and the depth of the lake and the consequent temperature of the bottom water, the volume of water to be cooled, and the vigor of the cooling processes. When the temperature has thus become uniform, the water of the lake is readily moved throughout its entire depth by the wind. It is turned over and all parts of it are brought into contact with the atmosphere. As a result,