Page:Popular Science Monthly Volume 73.djvu/108

This page has been proofread, but needs to be validated.
104
THE POPULAR SCIENCE MONTHLY

of solar energy by radiation, the sun could acquire its present energy of rotation in thirty-two thousand years. From an estimate of the limited amount of meteoric matter available near the sun, he concludes that "sunlight can not last as at present for three hundred thousand years." This calculation of the year 1854 attracted no attention at the time. Later, the theory was abandoned by its author, as at variance with known facts.

Evidently the theory of solar heat was still in a very crude form. But important new ideas were brought into view in the same year, 1854, by Helmholtz, in a popular lecture at Königsberg, delivered on the occasion of the Kant commemoration.[1] Unlike Mayer and Thomson, he starts out with the nebular hypothesis of Kant and Laplace, and derives solar heat from nebular contraction. During the contraction of the nebula from which sun and planets were formed, and also during the contraction of the sun, now assumed to be in progress, the kinetic energy obtained thereby is converted into heat and compensates for the loss of solar heat by radiation. He concludes that if the sun contracts the ten-thousandth part of its radius enough heat is generated to supply radiation for 2,100 years.[2] His figures yield twentytwo million years as the probable age of the sun, on the assumption of uniform radiation and homogeneous density. Experimental data on the intensity of solar radiation, found later by Langley, reduced this age to eighteen million or less.

Helmholtz's theory was a tremendous advance on that of falling meteors, assumed by Mayer and Thomson. No doubt meteors fall into the sun, as assumed by Mayer and Thomson, but the Mayer-Thomson theory made demands upon these meteors that bordered on extravagance. We are certain that a part of the solar heat is due to falling meteors, but its amount is as nothing, compared with the heat resulting from the gravitational energy of shrinkage. Until recently these were the only important sources considered.

In the sixties fresh attacks were made on the problem of the age of the sun by William Thomson. In 1862 appeared in the Macmillan's Magazine an article, "On the Age of the Sun's Heat,"[3] in which he favors a meteoric theory like that of Helmholtz, by which there is no difficulty in accounting for 20,000,000 years' heat radiated by the sun. He concludes that we may accept "as a lowest estimate for the sun's initial heat, 10,000,000 times a year's supply at present rate, but 50,000,000 or 100,000,000 as possible, in consequence of the sun's greater


  1. H. Helmholtz, "Popular Lectures" (transl. by E. Atkinson), New York, 1897, pp. 153-193, "On the Interaction of Natural Forces."
  2. Op. cit., p. 190.
  3. Sir William Thomson's "Popular Lectures and Addresses," Vol. I., 1891, pp. 356-375.