Page:Popular Science Monthly Volume 8.djvu/518

This page has been validated.
502
THE POPULAR SCIENCE MONTHLY.

the ranks of the pharmaceutical profession, viz., Davy, Liebig, and Dumas. But the debt owed by chemistry to pharmacy has been amply repaid: the labors of the chemist have transformed the pharmaceutical art, replacing empiricism by science, enriching the materia medica with a vast number of new substances, and introducing new processes. Such old-fashioned drugs as coral, egg-shells, and the like, were shown by the chemist to possess no other value than belongs to the calcareous salts of which they are chiefly composed. Iodine was shown to be the active principle in the drug, calcined sponge; and henceforth iodine takes the place of the crude and bulky residue from the burning of sponge. In like manner quinine and morphine replaced cinchona-bark and opium.

In cases where the medicinal virtues are not apparently lodged in a single principle capable of being isolated, pharmacy has recourse to other processes, and obtains by expression, percolation, and evaporation, or distillation, often in vacuo, concentrated extracts which enable us to dispense with the crude drugs. Thus, for a rough example, by means of the sulphide of carbon the subtile perfumes of the violet and jasmine have been isolated. The artificial formation of urea and valerianic and benzoic acids opened up a new field for chemistry and pharmacy. By a careful dissection, as it were, of certain organic principles, we have learned to reconstruct them; and the triumphs of this method are seen in the artificial production of indigo, orcine and alizarine, and the odorant principle of vanilla. What wonder, then, that the chemist should now aspire to produce, artificially, the active principles of the poppy and cinchona, and render cheaper those precious drugs, morphine and quinine? These problems are destined to be solved at no distant day.

The history of anæsthetics is next traced by the author from the discovery of the physiological action of nitrous oxide by Davy to that of chloral by Liebreich. From this he passes to the subject of the chemical changes undergone by drugs in the animal economy, and the relations of these changes to physiological action. The mineral salts of many of the metals, such as sulphates and chlorides, act, to a great extent, like foreign substances when taken into the stomach, forming insoluble compounds with albuminous matters; but, when combined with certain organic acids, these metals are in a condition favorable to absorption. Thus, it is that the citrates, tartrates, and lactates of bismuth, antimony, iron, etc., are now advantageously employed in medical practice.

It having occurred to a chemist that salicylic acid might be antiseptic like carbolic acid, he made experiments which resulted in showing that in this almost tasteless body we possess an antiseptic agent of great power.

The immense advance made in the pharmaceutical art and the constant contributions brought to it by chemistry demand each year a higher education for the profession of pharmacy, and the day cannot be far distant when the need of a regular training and a thorough scientific education will be held to be as indispensable for the pharmacist as for the physician and the surgeon,

Haeckel on Scientific Institutions.—In his latest book ("Ziele und Wege der heutigen Entwickelungsgeschichte") Prof. Haeckel, the great apostle of Evolution in Germany, announces the discovery of the following law: "In all the magnificent scientific institutes founded in America by Agassiz, the following empirical law, long recognized in Europe, has been confirmed, viz.: that the scientific work of these institutes and the intrinsic value of their publications stand in an inverse ratio to the magnitude of the buildings and the splendid appearance of their volumes.... I need only refer," he adds, "to the small and miserable institutes and the meagre resources with which Baer in Königsberg, Schleiden in Jena, Johannes Müller in Berlin, Liebig in Giessen, Virchow in Würzburg, Gegenbaur in Jena, have not only each advanced his special science most extensively, but have actually created new spheres for them. Compare with these the colossal expenditure and the luxurious apparatus in the grand institutes of Cambridge, Leipsic, and other so-called great universities. What have they produced in proportion to their means?"—Pall Mall Gazette.