Page:Popular Science Monthly Volume 8.djvu/520

This page has been validated.
504
THE POPULAR SCIENCE MONTHLY.

Adrian, it consists of a great block of freestone, about fifteen feet in length and five feet in width. Near one edge of this block there is a hole fifteen inches deep, having a diameter at the top of twenty inches, resembling a large mortar. "At the time of my visit," writes Mr. Payne, "this 'mill' was filled with water from recent rains. This was measured as it was dipped out, and amounted to fourteen gallons. Early settlers report that this spot was frequented by Indians, who brought thither their corn to be ground or pounded in this stone mortar. In the vicinity are seen many broad, smooth-faced stones, whose surfaces seem to have been highly heated. It is not improbable that these were used by Indians whereon to bake their cakes of corn. The grain was pounded as follows: A spring-pole was attached to one of the trees which stood near, and from the free end of this was suspended over the mortar, by means of twisted bark, a stone of convenient form and size. Stones suitable for this purpose lie beside the 'mill,' and it is probable that they once served the purpose above indicated."

Excommunicated Insects.À propos of the efforts in progress to destroy the phylloxera and other insect scourges in France, a writer in La Nature gives a curious bit of information relative to the way in which such pests used to be proceeded against when science, save so far as it could be made to agree with Romish dogmas, had no existence for the world. In 1120, the Bishop of Laon formally excommunicated all the caterpillars and field-mice. In 1488, the grand-vicars of Autun commanded the parish priests of the vicinity to enjoin the weevils to cease their ravages, and to excommunicate them. In 1535, the grand-vicar of Valence cited the caterpillars to appear before him for trial. He kindly assigned them counsel for their defense, and, as they did not appear, proceeded against and sentenced them, in contumaciam, to clear out of his diocese—a command which they probably obeyed!

During the seventeenth century, thirty-seven similar judgments, against both insects and quadrupeds, were issued. One is on record, during the eighteenth century, fulminated against a cow; and there is still another, of later date, due to a judge of Falaise, who condemned and hanged a sow for killing a child.—Christian Intelligencer.

Putting out Fires at Sea.—Liquid carbonic acid is proposed by Lieutenant F. M. Barber, U. S. Navy, as an agent for extinguishing fires on board ship. His plan, as communicated to the American Chemist, is to have, in some suitable place in the ship, a flask or flasks about three feet in length, and one foot in diameter, containing about 100 pounds of the gas in the liquid state. From the top of the flask, a small iron pipe is to be permanently fitted along the waterways throughout the entire length of the ship. From this main pipe branch pipes pass to every storeroom and compartment, each branch to be controlled separately by means of a cock. On the alarm of fire, the hatches are to be battened down, the cock in the branch pipe leading to the compartment where the fire is discovered is to be opened, and also the cock in the main next the gas-flask. The liquid gas passes out through the pipe in the form of vapor as soon as the pressure is removed, and is driven to the apartment where the fire is. This compartment it fills from the bottom up, without being diluted with the air. Given the cubic contents of any compartment, and the cubic space occupied by the cargo in it, sufficient gas can be admitted so as to render it absolutely certain that no fire can exist there. By then shutting the cock in the main pipe, the remainder of the gas is kept from vaporizing until such time as it may be required. This method of extinguishing fires is absolutely effectual; furthermore, it is simple, and involves no great expense. The only difficulties which seem to stand in the way of its practical application, are—1. The want of an apparatus for the expeditious and economical production of the liquid gas; and, 2. The want of suitable vessels to hold it at all temperatures. These difficulties, however, have been removed, and hence there exists no reason why all ships should not be provided with this effectual means of preventing disaster by fire.

In England, an apparatus for extin-