Page:Popular Science Monthly Volume 80.djvu/12

This page has been proofread, but needs to be validated.

If no spermatozoon enters into it, it perishes after a comparatively short time, in some animals in a few hours, in others in a few days or weeks. If, however, a spermatozoon enters into the egg, the latter begins to develop, i. e., the nucleus begins to divide into two nuclei and the egg which heretofore consisted of one cell is divided into two cells. Subsequently each nucleus and each cell divides again into two, and so on. These cells have in many eggs the tendency to remain at the surface of the egg or to creep to the surface and later such an egg forms a hollow sphere whose shell consists of a large number of cells. On the outer surface of this hollow sphere cilia are formed and the egg is now transformed into a free-swimming larva. Then an intestine develops through the growing in of cells in one region of the blastula and gradually the other organs, skeleton, vascular system, etc., originate. Embryologists had noticed that occasionally the unfertilized eggs of certain animals, e. g., sea-urchins, worms, or even birds, show a tendency to a nuclear or even a cell division; and R. Hertwig, Mead and Morgan had succeeded in inducing one or more cell divisions artificially in such eggs. But the cell divisions in these cases never led to the development of a larva, but at the best to the formation of an abnormal mass of cells which soon perished.

I succeeded twelve years ago in causing the unfertilized eggs of the sea-urchin to develop into swimming larvæ by treating them with seawater, the concentration of which was raised through the addition of a small but definite quantity of a salt or sugar. The eggs were put for two hours into a solution the osmotic pressure of which had been raised to a certain height. When the eggs were put back into normal seawater they developed into larvæ and a part of these larvæ formed an intestine and a skeleton. The same result was obtained in the eggs of other animals, starfish, worms and mollusks. These experiments proved the possibility of substituting physico-chemical agencies for the action of the living spermatozoon, but did not yet explain how the spermatozoon causes the development of the egg, since in these experiments the action of the spermatozoon upon the egg was very incompletely imitated. When a spermatozoon enters into the egg it causes primarily a change in the surface of the egg which results in the formation of the so-called membrane of fertilization. This phenomenon of membrane formation which had always been considered as a phenomenon of minor importance did not occur in my original method of treating the egg with hypertonic sea-water. Six years ago while experimenting on the Calif ornian sea-urchin, Strongylocentrotus purpuratus, I succeeded in finding a method of causing the unfertilized egg to form a membrane without injuring the egg. This method consists in treating the eggs for from one to two minutes with sea-water