Open main menu

Page:Popular Science Monthly Volume 81.djvu/400

This page has been proofread, but needs to be validated.

is accelerated, the blood is sent in increased volume to the skin, and circulates there in far greater volume, while less goes through the viscera and brain. As the surface temperature rises, the cutaneous vessels dilate, the veins become filled, the arteries may become small in volume, and the blood-pressure low, the heart is fatigued by the extra work thrown upon it. The influence of the heat stagnation is shown by the great acceleration of the pulse when work is done and the slower rate at which the pulse returns to its former rate on resting.

The increased percentage of carbonic acid and diminution of oxygen which has been found to exist in badly ventilated churches, schools, theaters, barracks, is such that it can have no effect upon the incidence of respiratory disease and higher death-rate, which statistical evidence has shown to exist among persons living in crowded and unventilated rooms. The conditions of temperature, moisture and windless atmosphere in such places primarily diminishes the heat loss, and secondarily the heat production, i. e., the activity of the occupants, together with total volume of air breathed, oxygen taken in and food eaten. The whole metabolism of the body is thus run at a lower plane, and the nervous system and tone of the body is unstimulated by the monotonous, warm and motionless air. If hard work has to be done it is done under conditions of strain. The number of pathogenic organisms is increased in such places, and these two conditions run together—diminished immunity and increased mass influence of infecting bacteria.

The volume of blood passing through, and of water vapor evaporated from, the respiratory mucous membrane must have a great influence on the mechanisms which protect this tract from bacterial infection. While too wet an atmosphere lessens evaporation, a hot dry atmosphere dries up the mucous membrane. As the immunizing powers depend on the passage of blood plasma into the tissue spaces, it is clear that a proper degree of moisture is important. The temperature, too, must have a great influence on the scavenger activity of the ciliated epithelium and leucocytes in the mucous membrane of the nose.

In the warm moist atmosphere of a crowded place the infection from spray, sneezed, coughed, or spoken out, is enormous. On passing out from such an atmosphere into cold moist air the respiratory mucous membrane of the nose is suddenly chilled, the blood-vessels constricted and the defensive mechanism of cilia and leucocyte checked. Hence the prevalence of colds in the winter. In the summer the infection is far less. We are far more exposed to moving air, and the sudden transition from a warm to a cold atmosphere does not occur. We believe that infection is largely determined by (1) the mass influence of the infecting agent; (2) the shallow breathing and diminished