Page:Popular Science Monthly Volume 83.djvu/118

This page has been validated.
114
THE POPULAR SCIENCE MONTHLY.

suggested by such photographs, soon received striking confirmation. A great cloud of hydrogen, which had hung for several days on the edge of one of these vortex structures, was suddenly swept into the spot at a velocity of about 60 miles per second. More recently Slocum has photographed at the Yerkes Observatory a prominence at the edge of the sun, flowing into a spot with a somewhat lower velocity.

Thus we were led to the hypothesis that sun-spots are closely analogous to tornadoes or water-spouts in the earth's atmosphere (Fig. 8).

Fig. 8. Water-spout.

If this were true, electrons, caught and whirled in the spot vortex, should produce a magnetic field. Fortunately, this could be put to a conclusive test, through the well-known influence of magnetism on light discovered by Zeeman in 1896.

In Zeeman's experiment a flame containing sodium vapor was placed between the poles of a powerful electro-magnet. The two yellow sodium lines, observed with a spectroscope of high dispersion, were seen to widen the instant a magnetic field was produced by passing a current through the coils of the magnet. It was subsequently found that most of the lines of the spectrum, which are single under ordinary conditions, are split into three components when the radiating source is in a sufficiently intense magnetic field. This is the case when the observation is made at right angles to the lines of force. When looking along the lines of force, the central line of such a triplet disappears (Fig. 9), and the light of the two side components is found to be circularly polarized in opposite