Page:Proceedings of the Royal Society of London Vol 60.djvu/465

This page has been validated.
On the Selective Conductivity of Polarising Substances.
433
"On the Selective Conductivity exhibited by certain Polarising Substances." By Jagadis Chunder Bose, M.A., D.Sc., Professor of Physical Science, Presidency College, Calcutta. Communicated by Lord Rayleigh, F.R.S. Received January 14,—Read January 28, 1897.


In my paper "On the Polarisation of Electric Rays by Double-refracting Crystals" (vide 'Journal of the Asiatic Society of Bengal,' May, 1895), and in a subsequent paper "On a New Electro-Polariscope" ('Electrician,' 27th December, 1895), I have given accounts of the polarising property of various substances. Amongst the most efficient polarisers may be mentioned nemalite and chrysotile. Nemalite is a fibrous variety of brucite. In its chemical composition it is a hydrate of magnesia, with a small quantity of protoxide of iron and carbonic acid. This substance is found to absorb very strongly electric vibrations parallel to its length, and transmit those that are perpendicular to the length. I shall distinguish the two directions as the directions of absorption and transmission. Chrysotile is a fibrous variety of serpentine. In chemical composition it is a hydrous silicate of magnesia. Like nemalite, it also exhibits selective absorption, though not to the same extent. The transmitted vibrations are perpendicular, and those absorbed parallel to the length. Different varieties of these substances exhibit the above property to a greater or less extent. I have recently obtained a specimen of chrysotile with a thickness of only 2·5 cm.; this piece completely polarises the transmitted electric ray by selective absorption.

The action of these substances on the electric ray is thus similar to that of tourmaline on light. It may be mentioned here that I found tourmaline to be an inefficient polariser of the electric ray; it does transmit the ordinary and the extraordinary rays with unequal intensities, but even a considerable thickness of it does not completely absorb one of the two rays.

In Hertz's polarising gratings, electric vibrations are transmitted perpendicular to the wires, the vibrations parallel to the wires being reflected or absorbed. Such gratings would be found to exhibit electric anisotropy, the conductivity in the direction of the wires being very much greater than the conductivity across the wires. The vibrations transmitted through the gratings are thus perpendicular to the direction of maximum conductivity—or parallel to the direction of greatest resistance. The vibration absorbed is parallel to the direction of maximum conductivity.

As the nemalite and chrysotile polarised the electric ray by unequal absorption in the two directions, I was led to investigate whether