This page has been validated.
THE CLASSICAL MECHANICS.
93

that its velocity is unchanged we may suppose that its position or its acceleration is unchanged.

Let us for a moment suppose that one of these two laws is a law of nature, and substitute it for the law of inertia: what will be the natural generalisation? A moment's reflection will show us. In the first case, we may suppose that the velocity of a body depends only on its position and that of neighbouring bodies; in the second case, that the variation of the acceleration of a body depends only on the position of the body and of neighbouring bodies, on their velocities and accelerations; or, in mathematical terms, the differential equations of the motion would be of the first order in the first case and of the third order in the second.

Let us now modify our supposition a little. Suppose a world analogous to our solar system, but one in which by a singular chance the orbits of all the planets have neither eccentricity nor inclination; and further, I suppose that the masses of the planets are too small for their mutual perturbations to be sensible. Astronomers living in one of these planets would not hesitate to conclude that the orbit of a star can only be circular and parallel to a certain plane; the position of a star at a given moment would then be sufficient to determine its velocity and path. The law of inertia which they would adopt would be the former of the two hypothetical laws I have mentioned.