This page has been validated.

sacrifices. Optical phenomena become particular cases in electric phenomena; as long as the former remained isolated, it was easy to explain them by movements which were thought to be known in all their details. That was easy enough; but any explanation to be accepted must now cover the whole domain of electricity. This cannot be done without difficulty.

The most satisfactory theory is that of Lorentz; it is unquestionably the theory that best explains the known facts, the one that throws into relief the greatest number of known relations, the one in which we find most traces of definitive construction. That it still possesses a serious fault I have shown above. It is in contradiction with Newton's law that action and re-action are equal and opposite—or rather, this principle according to Lorentz cannot be applicable to matter alone; if it be true, it must take into account the action of the ether on matter, and the re-action of the matter on the ether. Now, in the new order, it is very likely that things do not happen in this way.

However this may be, it is due to Lorentz that the results of Fizeau on the optics of moving bodies, the laws of normal and abnormal dispersion and of absorption are connected with each other and with the other properties of the ether, by bonds which no doubt will not be readily severed. Look at the ease with which the new Zeeman phenomenon found its place, and even aided the classification of Faraday's magnetic