This page has been validated.

may be, will always have a common area; the smaller they are the smaller it will be, and its limit is what the geometer calls a point. This is why it is said that the two lines which cross must have a common point, and this truth seems intuitive.

But a contradiction would be implied if we conceived of lines as continuums of the first order—i.e., the lines traced by the geometer should only give us points, the co-ordinates of which are rational numbers. The contradiction would be manifest if we were, for instance, to assert the existence of lines and circles. It is clear, in fact, that if the points whose co-ordinates are commensurable were alone regarded as real, the in-circle of a square and the diagonal of the square would not intersect, since the co-ordinates of the point of intersection are incommensurable.

Even then we should have only certain incommensurable numbers, and not all these numbers.

But let us imagine a line divided into two half-rays (demi-droites). Each of these half-rays will appear to our minds as a band of a certain breadth; these bands will fit close together, because there must be no interval between them. The common part will appear to us to be a point which will still remain as we imagine the bands to become thinner and thinner, so that we admit as an intuitive truth that if a line be divided into two half-rays the common frontier of these half-rays is a point. Here we recognise the conception of Kronecker,