Page:Scientific Papers of Josiah Willard Gibbs.djvu/283

This page has been proofread, but needs to be validated.
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.
247

from that of which the stability is in question. These varied states of the system are not in general states of equilibrium, and the relations expressed by the fundamental equations may not hold true of them. More than this,—if we attempt to describe a varied state of the system by varied values of the quantities which describe the initial state, if these varied values are such as are inconsistent with equilibrium, they may fail to determine with precision any state of the system. Thus, when the phases of two contiguous homogeneous masses are specified, if these phases are such as satisfy all the conditions of equilibrium, the nature of the surface of discontinuity (if without additional components) is entirely determined; but if the phases do not satisfy all the conditions of equilibrium, the nature of the surface of discontinuity is not only undetermined, but incapable of determination by specified values of such quantities as we have employed to express the nature of surfaces of discontinuity in equilibrium. For example, if the temperatures in contiguous homogeneous masses are different, we cannot specify the thermal state of the surface of discontinuity by assigning to it any particular temperature. It would be necessary to give the law by which the temperature passes over from one value to the other. And if this were given, we could make no use of it in the determination of other quantities, unless the rate of change of the temperature were so gradual that at every point we could regard the thermodynamic state as unaffected by the change of temperature in its vicinity. It is true that we are also ignorant in respect to surfaces of discontinuity in equilibrium of the law of change of those quantities which are different in the two phases in contact, such as the densities of the components, but this, although unknown to us, is entirely determined by the nature of the phases in contact, so that no vagueness is occasioned in the definition of any of the quantities which we have occasion to use with reference to such surfaces of discontinuity.

It may be observed that we have established certain differential equations, especially (497), in which only the initial state is necessarily one of equilibrium. Such equations may be regarded as establishing certain properties of states bordering upon those of equilibrium. But these are properties which hold true only when we disregard quantities proportional to the square of those which express the degree of variation of the system from equilibrium. Such equations are therefore sufficient for the determination of the conditions of equilibrium, but not sufficient for the determination of the conditions of stability.

We may, however, use the following method to decide the question of stability in such a case as has been described.

Beside the real system of which the stability is in question, it will be convenient to conceive of another system, to which we shall