Page:Scientific Papers of Josiah Willard Gibbs.djvu/345

This page has been proofread, but needs to be validated.
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.
309

then tend toward conformity with condition (614), the lighter portions rising to the top, more or less slowly, according to the viscosity of the film. The resulting difference of thickness between the upper and the lower parts of the bubble is due partly to the greater tension to which the upper parts are subject, and partly to a difference in the matter of which they are composed. When the film has only two components of which the potentials are not determined by the contiguous atmosphere, the laws which govern the arrangement of the elements of the film may be very simply expressed. If we call these components and , the latter denoting (as on page 301) that which exists in excess at the surface, one element of the film will tend toward the same level with another, or a higher, or a lower level, according as the quantity of bears the same ratio to the quantity of in the first element as in the second, or a greater, or a less ratio.

When a film, however formed, satisfies both the conditions (613) and (614), its thickness being sufficient for its interior to have the properties of matter in mass, the interior will still be subject to the slow current which we have already described, if it is truly fluid, however great its viscosity may be. It seems probable, however, that this process is often totally arrested by a certain gelatinous consistency of the mass in question, in virtue of which, although practically fluid in its behavior with reference to ordinary stresses, it may have the properties of a solid with respect to such very small stresses as those which are caused by gravity in the interior of a very thin film which satisfies the conditions (613) and (614).

However this may be, there is another cause which is often more potent in producing changes in a film, when the conditions just mentioned are approximately satisfied, than the action of gravity on its interior. This will be seen if we turn our attention to the edge where the film is terminated. At such an edge we generally find a liquid mass, continuous in phase with the interior of the film, which is bounded by concave surfaces, and in which the pressure is therefore less than in the interior of the film. This liquid mass therefore exerts a strong suction upon the interior of the film, by which its thickness is rapidly reduced. This effect is best seen when a film which has been formed in a ring is held in a vertical position. Unless the film is very viscous, its diminished thickness near the edge causes a rapid upward current on each side, while the central portion slowly descends. Also at the bottom of the film, where the edge is nearly horizontal, portions which have become thinned escape from their position of unstable equilibrium beneath heavier portions, and pass upwards, traversing the central portion of the film until they find a position of stable equilibrium. By these processes, the whole film is rapidly reduced in thickness.