Page:Scientific Papers of Josiah Willard Gibbs.djvu/356

This page has been proofread, but needs to be validated.
320
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.

precisely as if both masses were fluid, and denoted the tension of their common surface, and the true pressure in the mass specified. (Compare (619).)

The obstacles to an exact experimental realization of these relations are very great, principally from the want of absolute uniformity in the internal structure of amorphous solids, and on account of the passive resistances to the processes which are necessary to bring about a state satisfying the conditions of theoretical equilibrium, but it may be easy to verify the general tendency toward diminution of surface, which is implied in the foregoing equations.[1]

Let us apply the same method to the case in which the solid is a crystal. The surface between the solid and fluid will now consist of plane portions, the directions of which may be regarded as invariable. If the crystal grows on one side a distance , without other change, the increment of energy in the vicinity of the surface will be

  1. It seems probable that a tendency of this kind plays an important part in some of the phenomena which have been observed with respect to the freezing together of pieces of ice. (See especially Professor Faraday's "Note on Regelation" in the Proceedings of the Royal Society, vol. x, p. 440; or in the Philosophical Magazine, 4th ser., vol. xxi, p. 146.) Although this is a body of crystalline structure, and the action which takes place is doubtless influenced to a certain extent by the directions of the axes of crystallization, yet since the phenomena have not been observed to depend upon the orientation of the pieces of ice we may conclude that the effect, so far as its general character is concerned, is such as might take place with an isotropic body. In other words, for the purposes of a general explanation of the phenomena we may neglect the differences in the values of (the suffixes are used to indicate that the symbol relates to the surface between ice and water) for different orientations of the axes of crystallization, and also neglect the influence of the surface of discontinuity with respect to crystalline structure, which must be formed by the freezing together of the two masses of ice when the axes of crystallization in the two masses are not similarly directed. In reality, this surface—or the necessity of the formation of such a surface if the pieces of ice freeze together—must exert an influence adverse to their union, measured by a quantity , which is determined for this surface by the same principles as when one of two contiguous masses is fluid, and varies with the orientations of the two systems of crystallographic axes relatively to each other and to the surface. But under the circumstances of the experiment, since we may neglect the possibility of the two systems of axes having precisely the same directions, this influence is probably of a tolerably constant character, and is evidently not sufficient to alter the general nature of the result. In order wholly to prevent the tendency of pieces of ice to freeze together, when meeting in water with curved surfaces and without pressure, it would be necessary that , except so far as the case is modified by passive resistances to change, and by the inequality in the values of and for different directions of the axes of crystallization.
    It will be observed that this view of the phenomena is in harmony with the opinion of Professor Faraday. With respect to the union of pieces of ice as an indirect consequence of pressure, see page 198 of volume xi of the Proceedings of the Royal Society; or the Philosophical Magazine, 4th ser., vol. xxiii, p. 407.