must be such, namely, as shall not be affected by any of the changes mentioned above. For example, we may find properties which concern the plane (as that the whole surface must necessarily fall on the positive side of this plane), but we must not expect to find properties which concern the planes , or , in distinction from others parallel to them. It may be added that, as the volume, entropy, and energy of a body are equal to the sums of the volumes, entropies, and energies of its parts, if the surface should be constructed for bodies differing in quantity but not in kind of matter, the different surfaces thus formed would be similar to one another, their linear dimensions being proportional to the quantities of matter.
Nature of that Part of the Surface which represents States which are not Homogeneous.
This mode of representation of the volume, entropy, energy, pressure, and temperature of a body will apply as well to the case in which different portions of the body are in different states (supposing always that the whole is in a state of thermodynamic equilibrium), as to that in which the body is uniform in state throughout. For the body taken as a whole has a definite volume, entropy, and energy, as well as pressure and temperature, and the validity of the general equation (1) is independent of the uniformity or diversity in respect to state of the different portions of the body.[1] It is evident, therefore, that
- ↑ It is, however, supposed in this equation that the variations in the state of the body, to which , , and refer, are such as may be produced reversibly by expansion and compression or by addition and subtraction of heat. Hence, when the body consists of parts in different states, it is necessary that these states should be such as can pass either into the other without sensible change of pressure or temperature. Otherwise, it would be necessary to suppose in the differential equation (1) that the proportion in which the body is divided into the different states remains constant. But such a limitation would render the equation as applied to a compound of states valueless for our present purpose. If, however, we leave out of account the cases in which we regard the states as chemically different from one another, which lie beyond the scope of this paper, experience justifies us in assuming the above condition (that either of the two states existing in contact can pass into the other without sensible change of the pressure or temperature), as at least approximately true, when one of the states is fluid. But if both are solid, the necessary mobility of the parts is wanting. It must therefore be understood, that the following discussion of the compound states is not intended to apply without limitation to the exceptional cases, where we have two different solid states of the same substance at the same pressure and temperature. It may be added that the thermodynamic equilibrium which subsists between two such solid states of the same substance differs from that which subsists when one of the states is fluid, very much as in statics an equilibrium which is maintained by friction differs from that of a frictionless machine in which the active forces are so balanced, that the slightest change of force will produce motion in either direction. Another limitation is rendered necessary by the fact that in the following discussion the magnitude and form of the bounding and dividing surfaces are left out of account;