Page:Scientific Papers of Josiah Willard Gibbs.djvu/75

This page has been proofread, but needs to be validated.
THERMODYNAMIC PROPERTIES OF SUBSTANCES.
39

Properties of the Surface relating to Stability of Thermodynamic Equilibrium.

We will now turn our attention to the geometrical properties of the surface, which indicate wether the thermodynamic equilibrium of the body is stable, unstable, or neutral. This will involve the consideration, to a certain extent, of the nature of the processses which take place when equilibrium does not subsist. We will suppose the body placed in a medium of constant pressure and temperature; but as, when the pressure or temperature of the body at its surface differs from that of the medium, the immediate contact of the two is hardly consisten with the continuance of the initial pressure and temperature of the medium, both of which we desire to suppose constant, we will suppose the body separated from the medium by an envelop which will yield to the smallest differences of pressure between the two, but which can only yield very gradually, and which is also a very poor conductor of heat. It will be convenient and allowable for the purposes of reasoning to limit its properties to those mentioned, and to suppose that it does not occupy any space, or absorb any heat except what it transmits, i.e., to make its volume and its specific heat 0. By the intervention of such an envelop, we may suppose the action of the body upon the medium to be so retarded as not sensibly to disturb the uniformity of pressure and temperature in the latter.

When the body is not in a state of thermodynamic equilibrium, its state is not one of those which are represented by our surface. The body, however, as a whole has a certain volume, entropy, and enegy, which are equal to the sums of the volumes, etc., of its parts.[1] If, then, we suppose points endowed with mass proportional to the masses of the various parts of the body, which are in different thermodynamic states, placed in the positions determined by the states and motions of these parts, (i.e., so placed that their co-ordinates are equal to the volume, entropy, and energy of the whole body supposed successively in the same states and endowed with the same velocities as the different parts), the center of gravity of such points thus placed will evidently represent by its co-ordinates the volume, entropy, and energy of the whole body. If all parts of the body are at rest, the point representing its volume, entropy, and energy will be the center of gravity of a number of points upon the primitive surface. The effect of motion in the parts of the body will be to move the corresponding points parallel to the axis of , a distance equal in each case to the vis viva of the whole body, if endowed with the

  1. As the discussion is to apply to cases in which the parts of the body are in (sensible) motion, it is necessary to define the sense in which the word energy is to be used. We will see the word as including the vis viva of sensible motions.