Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/187

This page has been proofread, but needs to be validated.
QUATERNIONS AND THE ALGEBRA OF VECTORS.
171

versant. I should tell him that a veetor algebra is so far from being any one man's production that half a century ago several were already working toward an algebra which should be primarily geometrical and not arithmetical, and that there is a remarkable similarity in the results to which these efforts led (see Proc. A.A.A.S. for 1886, pp. 37, ff.) [this vol. p. 91, ff.]. I should call his attention to the fact that Lagrange and Gauss used the notation to denote precisely the same as Hamilton by his , except that Lagrange limited the expression to unit vectors, and Gauss to vectors of which the length is the secant of the latitude, and I should show him that we have only to give up these limitations, and the expression (in connection with the notion of geometrical addition) is endowed with an immense wealth of transformations. I should call his attention to the fact that the notation universal in the theory of orbits, is identical with Hamilton's except that Hamilton takes the area as a vector, i.e., includes the notion of the direction of the normal to the plane of the triangle, and that with this simple modification (and with the notion of geometrical addition of surfaces as well as of lines) this expression becomes closely connected with the first-mentioned, and is not only endowed with a similar capability for transformation, but enriches the first with new capabilities. In fact, I should tell him that the notions which we use in vector analysis are those which he who reads between the lines will meet on every page of the great masters of analysis, or of those who have probed deepest the secrets of nature, the only difference being that the vector analyst, having regard to the weakness of the human intellect, does as the early painters who wrote beneath their pictures "This is a tree," "This is a horse."

I cannot attach quite so much importance as Mr. McAulay to uniformity of notation. That very uniformity, if it existed among those who use a vector analysis, would rather obscure than reveal their coimection with the general course of modern thought in mathematics and physics. There are two ways in which we may measure the progress of any reform. The one consists in counting those who have adopted the shibboleth of the reformers; the other measure is the degree in which the community is imbued with the essential principles of the reform. I should apply the broader measure to the present case, and do not find it quite so bad as Mr. McAulay does.

Yet the question of notations, although not the vital question, is certainly important, and I assure Mr. McAulay that reluctance to make unnecessary innovations in notation has been a very powerful motive in restraining me from publication. Indeed my pamphlet on Vector Analysis, which has excited the animadversion of quaternionists, was never formally published, although rather widely