Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/239

This page has been proofread, but needs to be validated.

XIV.


A COMPARISON OF THE ELASTIC AND THE ELECTRICAL THEORIES OF LIGHT WITH RESPECT TO THE LAW OF DOUBLE REFRACTION AND THE DISPERSION OF COLORS.

[American Journal of Science, ser. 3, vol. xxxv, pp. 467–475, June, 1888.]

It is claimed for the electrical[1] theory of light that it is free from serious difficulties, which beset the explanation of the phenomena of light by the dynamics of elastic solids. Just what these difficulties are, and why they do not occur in the explanation of the same phenomena by the dynamics of electricity, has not perhaps been shown with all the simplicity and generality which might be desired. Such a treatment of the subject is however the more necessary on account of the ever-increasing bulk of the literature on either side, and the confusing multiplicity of the elastic theories. It is the object of this paper to supply this want, so far as respects the propagation of plane waves in transparent and sensibly homogeneous media. The simplicity of this part of the subject renders it appropriate for the first test of any optical theory, while the precision of which the experimental determinations are capable, renders the test extremely rigorous.

It is moreover, as the writer believes, an appropriate time for the discussion proposed, since on one hand the experimental verification of Fresnel's Law has recently been carried to a degree of precision far exceeding anything which we have had before,[2] and on the other, the

  1. The term electrical seems the most simple and appropriate to describe that theory of light which makes it consist in electrical motions. The cases in which any distinctively magnetic action is involved in the phenomena of light are so exceptional, that it is difficult to see any sufficient reason why the general theory should be called electromagnetic unless we are to call all phenomena electromagnetic which depend on the motions of electricity.
  2. In the recent experiments of Professor Hastings relating to the index of refraction of the extraordinary ray in Iceland spar for the spectral line D2 and a wave-normal inclined at about 31° to the optic axis, the difference between the observed and the calculated values was only two or three units in the sixth decimal place (in the seventh significant figure), which was about the probable error of the determinations. See Am. Jour. Sci. ser. 3, vol. xxxv, p. 60.