Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/291

This page has been proofread, but needs to be validated.
HUBERT ANSON NEWTON.
275

examine whether the fifth period, viz. that of 33.25 years, would give a motion of the node in accordance with the observed value. As this period gives a very long ellipse for the orbit, extending a little beyond the orbit of Uranus, it was necessary to take account of the perturbations due to that planet and to Saturn. Professor Adams found 28' for the motion of the node. As this value must be regarded as sensibly identical with Professor Newton's 29' of observed motion, no doubt was left in regard to the period of revolution or the orbit of the meteoroids.[1]

About this time, M. Schiaparelli was led by a course of reasoning similar to Professor Newton's to the same conclusion,—that the mean velocity of the meteoroids is not very different from that due to parabolic orbits. In the course of his speculations in regard to the manner in which such bodies might enter the solar system, the questions suggested themselves: whether meteoroids and comets may not have a similar origin; whether, in case a swarm of meteoroids should include a body of sufficient size, this would not appear as a comet; and whether some of the known comets may not belong to streams of meteoroids. Calculating the orbit of the Perseids, or August meteoroids, from the radiant point, with the assumption of a nearly parabolic velocity, he found an orbit very similar to that of the great comet of 1862, which may therefore be considered as one of the Perseids,—probably the largest of them all.[2]

At that time no known cometic orbit agreed with that of the Leonids, but a few months later, as soon as the definitive elements of the orbit of the first comet of 1866 were published, their resemblance to those of the Leonids, as calculated for the period of 33.25 years, which had been proved to be the correct value, was strikingly manifested, attracting at once the notice of several astronomers.

Other relations of the same kind have been discovered later, of which that of Biela's comet and the Andromeds is the most interesting, as we have seen the comet breaking up under the influence of the sun; but in no case is the coincidence so striking as in that of the Leonids, since in no other case is the orbit of the meteoroids completely known, independently of that of the comet, and without any arbitrary assumption in regard to their periodic time.

The first comet of 1866 is probably not the only one belonging to the Leonid stream of meteoroids. Professor Newton has remarked that the Chinese annals mention two comets which passed rapidly in succession across the sky in 1366, a few days after the passage of the earth through the node of the Leonid stream, which was marked in Europe by one of the most remarkable star-showers on record. The

  1. Monthly Notices Roy. Ast. Soc., vol. xxvii, p. 247.
  2. Entwurf, etc., pp. 49–54.