Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/74

This page has been proofread, but needs to be validated.
58
VECTOR ANALYSIS.

and consider the limits within which varies, when we give all possible values.

The products and are evidently planar dyadics.

124. Def.—A dyadic is said to be an idemfactor, when

for all values of

or when

for all values of

If either of these conditions holds true, must be reducible to the form

Therefore, both conditions will hold, if either does. All such dyadics are equal, by No. 108. They will be represented by the letter

The direct product of an idemfactor with another dyadic is equal to that dyadic. That is,

where is any dyadic.

A dyadic of the form

in which are the reciprocals of is an idemfactor. (See No. 38.) A dyadic trinomial cannot be an idemfactor, unless its antecedents and consequents are reciprocals.

125. If one of the direct products of two dyadics is an idemfactor, the other is also. For, if

for all values of and is complete;

for all values of therefore for all values of and therefore

Def. — In this case, either dyadic is called the reciprocal of the other.

It is evident that an incomplete dyadic cannot have any (finite) reciprocal.

Reciprocals of the same dyadic are equal. For if and are both reciprocals of

If two dyadics are reciprocals, the operators formed by using these dyadics as prefactors are inverse, also the operators formed by using them as postfactors.

126. The reciprocal of any complete dyadic

is

where are the reciprocals of and are the reciprocals of (See No. 38.)