Page:Scientific results HMS Challenger vol 18 part 2.djvu/17

This page has been proofread, but needs to be validated.
REPORT ON THE RADIOLARIA
893

trace of a sagittal ring nor of a basal tripod. This is the case in the remarkable family of Cyrtocalpida (Archicorida and Archicapsida), in numerous Botryodea and in other Cyrtellaria.

D. The skeleton is composed of a sagittal ring and a basal tripod, without latticed cephalis. This is the case in a few, but very important forms of Stephoidea: Cortina, Stephanium, Cortiniscus, Stephaniscus, Podocoronis, and some allied genera.

E. The skeleton is composed of a sagittal ring and a latticed cephalis, but without basal tripod. This is the case in numerous Cyrtellaria, in the Circospyrida (or Zygospyrida apoda: Dictyospyris, Circospyris) and some other Spyroidea; and in a large number of Botryodea and Cyrtoidea eradiata (a part of the Sethocyrtida, Theocyrtida, Lithocampida, and others).

F. The shell is composed of a basal tripod and a latticed cephalis, but without any trace of the sagittal ring. This is the case in numerous Cyrtoidea triradiata and multiradiata, and perhaps in the majority of the following families—Tripocalpida, Tripocyrtida, Podocyrtida, and Podocampida.

G. The shell is composed of all three above-mentioned elements, of a sagittal ring, a basal tripod, and a latticed cephalis. This is the case in the great majority of Spyroidea (with a few exceptions only), and perhaps also in the majority of Cyrtoidea.

The survey of these seven groups, A to G, each of which is represented by numerous living forms, shows clearly how difficult and complicated the morphology and phylogeny of the numerous Nassellaria must be. For all possible combinations of the three original structural elements are realised abundantly, and in such complicated relations, and so intermingled in the different orders and families, that it seems nearly hopeless to answer the question of their true origin. The identity in the structure of the central capsule, however, in all these Monopylea, makes it probable that they have all arisen originally from the skeletonless Nassellida (Cystidium, Nassella), either in a monophyletic or in a polyphyletic way. In this respect the following phylogenetical hypotheses are possible.

1. Monophyletic hypothesis, deriving all Nassellaria from a simple sagittal ring (Archicircus, Lithocircus, &c., Pl. 81). The groups A, D, E, and G may be derived easily from such a ring, but the groups B, C, and F only by means of the hypothesis that the original ring may be completely reduced and finally lost. This hypothesis was stated by me in the years 1877 to 1879, when I had got the first general survey of the astonishing number of new Nassellaria in the Challenger collection, and as I had found the sagittal ring in the majority of them. This, my former hypothesis, is mentioned by Richard Hertwig (1879, loc. cit., pp. 68, 126). It was afterwards supported with particular energy by O. Bütschli (1882, Zeitschr. für wiss. Zool., Bd. XXXVI.).

2. Monophyletic hypothesis, deriving all Nassellaria from a basal tripod (Triplagia, Plagoniscus, &c., Pl. 91). The groups B, D, F, and G, all triradiate, may