Page:Somerville Mechanism of the heavens.djvu/56

This page has been validated.
l
PRELIMINARY DISSERTATION.

and that, at the time Ibn Junis made his observations at Cairo, about the year 1000, the Arabians were in the habit of employing the vibrations of the pendulum in their astronomical observations.

One of the most immediate and striking effects of a gravitating force external to the earth is the alternate rise and fall of the surface of the sea twice in the course of a lunar day, or 24h 50m 48s of mean solar time. As it depends on the action of the sun and moon, it is classed among astronomical problems, of which it is by far the most difficult and the least satisfactory. The form of the surface of the ocean in equilibrio, when revolving with the earth round its axis, is an ellipsoid flattened at the poles; but the action of the sun and moon, especially of the moon, disturbs the equilibrium of the ocean.

If the moon attracted the centre of gravity of the earth and all its particles with equal and parallel forces, the whole system of the earth and the waters that cover it, would yield to these forces with a common motion, and the equilibrium of the seas would remain undisturbed. The difference of the forces, and the inequality of their directions, alone trouble the equilibrium.

It is proved by daily experience, as well as by strict mechanical reasoning, that if a number of waves or oscillations be excited in a fluid by different forces, each pursues its course, and has its effect independently of the rest. Now in the tides there are three distinct kinds of oscillations, depending on different causes, producing their effects independently of each other, which may therefore be estimated separately.

The oscillations of the first kind which are very small, are independent of the rotation of the earth; and as they depend on the motion of the disturbing body in its orbit, they are of long periods. The second kind of oscillations depends on the rotation of the earth, therefore their period is nearly a day: and the oscillations of the third kind depend on an angle equal to twice the angular rotation of the earth; and consequently happen twice in twenty-four hours. The first afford no particular interest, and are extremely small; but the difference of two consecutive tides depends on the second. At the time of the solstices,