Page:The Elements of Euclid for the Use of Schools and Colleges - 1872.djvu/283

This page has been proofread, but needs to be validated.
EUCLID'S ELEMENTS.
259

fore the angle DAB is greater than the angle CAK. Much more then is the angle DAK greater than the angle CAK. But the angle DAK was shewn to be equal to the angle CAK; which is absurd. Therefore EF must coincide with AB; and therefore the angle FEG coincides with the angle BAC, and is equal to it.

I. 18, I. 19. In order to assist the student in remembering which of these two propositions is demonstrated directly and which indirectly, it may be observed that the order is similar to that in I. 5 and I. 6.

I. 20. "Proclus, in his commentary, relates, that the Epicureans derided Prop, ao, as being manifest even to asses, and needing no demonstration; and his answer is, that though the truth of it be manifest to our senses, yet it is science which must give the reason why two sides of a triangle are greater than the third: but the right answer to this objection against this and the 21st, and some other plain propositions, is, that the number of axioms ought not to be increased without necessity, as it must be if these propositions be not demonstrated." Simson.

I. 21. Here it must be carefully observed that the two straight lines are to be drawn from the ends of the side of the triangle. If this condition be omitted the two straight lines will not necessarily be less than two sides of the triangle.

I. '22. " Some authors blame Euclid because he does not demonstrate that the two circles made use of in the construction of this problem must cut one another: but this is very plain from the determination he has given, namely, that any two of the straight lines DF, FG, GH, must be greater than the third. For who is so dull, though only beginning to learn the Elements, as not to perceive that the circle described from the centre F, at the distance FD, must meet FH betwixt F and H, because FD is less than FH; and that for the like reason, the circle described from the centre G, at the distance GH...must meet DG betwixt D and G; and that these circles must meet one another, because FD and GH are together greater than FG?" Simson.

The condition that B and C are greater than A, ensures that the circle described from the centre G shall not fall entirely within the circle described from the centre F; the condition that A and B are greater than C, ensures that the circle described