This page has been validated.

[ 296 ]

XXXV. Note on the Derivation from the Principle of Relativity of the Fifth Fundamental Equation of the Maxwell-Lorentz Theory.

By Richard C. Tolman, Ph. D., Instructor in Physical Chemistry at the University of Michigan.[1]


If we consider two systems of "space time coordinates” S and S' in relative motion in the X direction with the velocity v, any kinematic phenomenon which occurs may be described in terms of the variables x, y, z and t belonging to the system S or z', y', z' and t' belonging to the system S'. The Einstein theory of relativity has led to the following equations for transforming the description of a kinematic phenomenon from one set of coordinates to the other[2].

(1)
(2)
(3)
(4)

(where is the velocity of light and is substituted for the fraction ).

The content of these equations may be expressed in words, by saying that an observer in the moving system S' (S having been arbitrarily taken as at rest) uses a metre stick which, although the same length as a stationary metre stick when held perpendicular to the line of relative motion of the two systems, is shortened in the ratio of when held parallel to OX, that clocks in the moving system beat elf seconds which are longer than those of stationary clocks in the ratio , and that a clock in the moving system which is units to the rear of the one at the centre of coordinates is set ahead by seconds, although the two clocks appear synchronous to the moving observer. A simple non-analytical derivation of these relations has been given in another place[3].

Let us now take the Maxwell-Hertz equations for the

  1. Communicated by the Author.
  2. Einstein, Arm. d. Physik, xvii. p. 891 (1905); Jahrbuch der Radioaktivität, iv. p. 411 (1907).
  3. Lewis and Tolman, Proc. Amer. Acad. xliv. p. 711 (1909); Phil. Mag. xviii. p. 510 (1909).