Popular Science Monthly/Volume 57/September 1900/The Progress of Science


The summer laboratories and the scientific expeditions which are employing the vacation period of the men of science in this country would make a long list. A vacation from teaching means to the scientific man a chance to work, and at present there are numerous organized means of enabling him to profit by this chance. The most definite form which such arrangements for summer work have taken is the summer laboratory or experiment station for biologists. Such a station affords conveniently the mechanical appliances for scientific work in a good locality for collecting material to work with. The marine or other forms of life are thus made accessible to those whose professional work during the year keeps them in an unfavorable locality. Besides the laboratory at Woods Holl, which is the nearest American representative of Professor Dohrn's great laboratory at Naples, there is an important summer station at Cold Spring Harbor, Long Island, under the auspices of the Brooklyn Institute, and others cared for by Leland Stanford, Jr. University, the University of Indiana, the Ohio State University and other institutions. It is common to combine teaching with research at these laboratories and in some cases they become essentially summer schools, though generally giving courses of a higher order than the ordinary summer school for nature study. But research is often the chief and sometimes the sole purpose of these stations, and a vast amount of work is done each year. The most important of these summer stations is the Woods Holl Marine Biological Laboratory, situated on the southern coast of Massachusetts, between Buzzard's Bay and Vineyard Sound. This laboratory has been fortunate in having been the summer home at one time or another of a majority of the leading zoölogists of the country. It has been usual for the advanced students in universities to take courses or carry on research there, and Woods Holl training has been a valuable recommendation. The reason is not far to seek. The material advantages, the spirit of zeal for concrete fact, the acquaintance with superior men in the science and with a large number of equals, all help to give the best sort of professional training. Such a place also serves as a refinery where opinions and theories may be purified by healthy criticism and by the subtler influence of example. There is a story of three eminent biologists who got involved in a controversy over a disputed question. They argued for a while. Finally one of them said: "Let us get the eggs in question and study them together." This was done, and the three men spent the afternoon over their microscopes patiently working out the problem together; and they did work it out. One of the great advantages of summer laboratories is that they put fellow-students in a frame of mind in which they can work things out together.

The Woods Holl Laboratory has a right to claim a large share in the credit for three of the most important developments in biology in the last decade—the study of 'cell lineage,' of regeneration of organs and of the influence of abnormal conditions on the development of embryos. Workers there have traced the development of the different cells into which the egg-cell divides and have discovered just what parts of the body arise from each group of cells. They have shown that the way in which the egg divides and redivides is as constant, is as much a part of the nature of the animal, as its adult form and structure are. They have replaced vious vague notions of the development of animals by exact accounts of the cell-origin of different organs of the body. Others have studied the abilities of mutilated animals to reproduce the parts lost and the conditions and limitations of such regeneration. Such studies have greatly broadened our views of the nature of animal tissues. Others have investigated the results of artificial conditions on the development of animals, especially in the earliest stages. For instance, from eggs broken into pieces there have been developed twins, triplets and monsters of various sorts. Such experiments as these are producing data concerning the very fundaments of living matter and are leading biology beyond the mere description of animal structures and functions towards an insight into the elementary principles of development. Among the numerous researches, some seventy in all, which are being carried on at Woods Holl this summer, those of the most general interest are Prof. C. O. Whitman's study of hybrids and Prof. Jacques Loeb's study of artificial fertilization. Prof. Whitman has been breeding pigeons of a large number of species for several years, as a means of studying the phenomena of heredity shown in hybrid forms. More or less incidentally, he has discovered many notable facts about the instincts and habits of the birds and about various physiological functions connected with reproduction. Biologists everywhere are coming to realize the necessity of systematic and continuous study of families of animals through a number of generations. Prof. Whitman's is the most extensive of such studies in this country. The detailed results of Prof. Loeb's continuation of his experiments on the action of various salts on unfertilized eggs will naturally be awaited with great interest. We have already noticed his success in causing unfertilized eggs of the sea-urchin to develop into normal individuals as far as the pluteus stage. He has this year succeeded in producing artificial parthenogenesis not only in starfish (Asterias), but also in worms (Chaetopterus). Through a slight increase in the amount of K-ions in the sea-water, the eggs of the latter can be caused not only to throw out the polar bodies as Mead had already observed, but also to reach the Trochophore stage and swim about as actively as the larvae originating from fertilized eggs.

In the courses of instruction offered at Woods Holl there are two of more than ordinary interest. Professor Loeb's course in physiology departs from the traditional study of physiological functions in the frog and in some mammal, and offers instead experimental work on the simpler invertebrate forms. The phenomena of life are there presented in diagrammatic form, and are interpreted as far as possible in terms of physics and chemistry. The course in nature study, given this year for the first time, offers to students without technical training a chance to learn about animals and plants from specialists. It has shown clearly that the best science is popular, that really scientific work can be done without previous drill in terminology or technique. A novel feature of the course has been the systematic experimental study of the instincts and intelligent performances of animals. The method of offering to intelligent men and women, who wish to know about animal life, but have no time or need for special technical training or detailed anatomical work, a chance to get something better than mere book knowledge or haphazard personal observation, should be widely extended.

The laboratory of the Brooklyn Institute of Arts and Sciences, situated at Cold Spring Harbor, Long Island, is nearly as old as the Woods Holl Laboratory. Prof. C. B. Davenport, its director, is probably the most active worker in this country in the quantitative study of variation, and one of the leading lines of research at Cold Spring Harbor is now and will probably be for some years the attempt to get an exact estimate of normal variation in different animals, of the production of abnormal variations and of the laws of inheritance. Professor Davenport is himself breeding mice extensively and thus securing data. Of the courses offered two deserve special mention. One is the course for teachers of zoölogy in high schools, a chief feature of which is the study of living animals. The other is a course on 'Variation and Inheritance,' which gives advanced students a chance to study the most important question of biology and by the most exact methods. The Cold Spring laboratory has been growing very rapidly of late and seems likely to continue to grow. In general the evolution of the summer laboratory is of interest. An enthusiast or a modest association gathers a few sympathetic workers at some favorable locality. The informality and personal contact are inspiring and the place becomes famous for good work. Then come numbers and with numbers a rapid complication of the social life of the school. The eminent leader is replaced by a dozen different instructors; one no longer knows every one else; organization becomes complex and what was at first a sort of scientific family may turn into a formal institution. The summer laboratory should not become a big summer college at the cost of its single-mindedness.

While special laboratories are open for work in biology, and the universities are extending their sessions through the summer, the common schools are also beginning to realize that they must adapt themselves to an urban civilization. Country schools should adjourn in the summer for obvious reasons, but in the city nothing is gained by turning the children from the schools into the streets. The vacation or play schools now in session in New York City are in every way to be commended. The only drawback is that they cannot hold half of those who wish to attend. Set free from the traditional curriculum the children learn more in the five weeks of 'play school' in the summer, than in twice that period of 'work school' in the winter. Swimming, open-air gymnastics, team games, chess, visits to parks, piers, museums and libraries, excursions in barges and into the country, sketching, whittling, cooking, sewing and the rest do not lose their educational value because the children like them. Such exercises will do a good deal toward curing the indigestion caused by being fed for five years on the three R's, and toward correcting the anti-social atmosphere of the ordinary school-room. Among the commonplaces of modern psychology are: It is not what a person knows but what he does that counts; the way to learn is to act; progress follows from the pleasure of partial success; an individual only exists in his relations with others. Such maxims seem to be as clearly kept in view by the New York Department of Education in the summer as they are forgotten in the winter. The committee on the New York Play Schools consists of Messrs. Seth T. Stewart, John L. N. Hunt and A. P. Marble, to whom and to the teachers who have carried out their plans much honor is due. The report for 1899 is an educational document of importance. Copies can probably be obtained from the Department of Education of the City of New York.

The Paris Exposition and its congresses may be regarded as a great summer school. The applications of science exhibited for amusement, for instruction and for the advantage of commerce and manufactures are bewildering in their multiplicity. It is interesting to note that the group 'Education' heads the catalogue of the Exposition. In the exhibits representing higher instruction, the United States received nine grand prizes and nine gold medals, ranking second to France. On the motion of a French juror, three Americans were mentioned as worthy of special distinction: Prof. H. A. Rowland, Johns Hopkins University; Prof. Nicholas Murray Butler, of Columbia University; Director Melvil Dewey, University of the State of New York. More than one hundred and fifty international congresses, dealing with various subjects of scientific, industrial and social importance, are held this summer in Paris, and form no small part of the interest of the Exposition, supplementing as they do the exhibits, furnishing the theory, as the exhibits set forth the accomplishments, of art and industry. The magnitude of these congresses may be seen from the fact that the thirteenth International Medical Congress had a registration of over six thousand members, of whom over four hundred were from America.

Friends of scientific investigation and the teaching of science will rejoice at the recent decision in the courts concerning the Fayerweather will case. For the eighth time the grant of $3,000,000 to the colleges has been confirmed. The case will probably be appealed to the Supreme Court of the United States, but the probability is large that Mr. Fayerweather's wishes will in the end be carried out. At the present time, money left to colleges is likely to be used to a very large extent to promote the progress of science. Required courses in linguistics are decreasing, and the extension of college teaching and university research is largely along scientific lines. New departments, such as those of physiography, physical chemistry, anthropology and experimental psychology are being established, while economics and sociology are becoming less speculative and more like the natural sciences in their methods. The college student of to-day gets proportionately more training in the professedly natural sciences than ever before, and gets scientific training in connection with courses which were once mere exercises in learning the opinions of more or less important people.

We called attention last month to the completion of the plans for an international catalogue of scientific literature, and stated that Great Britain and Germany had each subscribed for forty-five of the three hundred sets that must be sold in order to defray the cost. It is obvious that the United States, with such a large number of libraries and educational institutions, should subscribe for its share of the sets, namely, not less than forty-five. The Smithsonian Institution has provisionally undertaken to represent the interests of the catalogue in the United States, and will receive promises of subscriptions. The catalogue will be issued in seventeen volumes, comprising the following subjects: Mathematics, mechanics, physics, chemistry, astronomy, meteorology (including terrestrial magnetism), mineralogy (including petrology and crystallography), geology, geography (mathematical and physical), palæontology, general biology, botany, zoölogy, human anatomy, physical anthropology, physiology (including experimental psychology, pharmacology and experimental pathology) and bacteriology. At least one volume will be given to each subject, and it is proposed that not all the volumes shall be issued at once, but in four groups, as soon as possible after the first of January, April, July and October, respectively. The subscription price for a complete set of the whole catalogue, in seventeen volumes, is £17, say $85. The volumes will vary in price and can be obtained separately, but it is necessary to secure the guarantee of the sale of forty-five sets in America during the month of September, and all libraries used for scientific research, and those individuals who can afford the cost, should send subscriptions to Dr. Richard Rathbun, Assistant Secretary of the Smithsonian Institution, Washington, D. C.

In the July number of the Monthly Dr. H. C. Bolton gave an account of the radio-active substances which have been found in pitchblende, the chief ore of uranium. The subject continues to excite the interest of both chemists and physicists, though just at present the largest amount of work is being done by the chemists, to whom the question is of extraordinary interest as to whether these substances are or are not real chemical elements. Béla von Lengyel, of Budapest, as Dr. Bolton explained, has attacked the problem from the synthetic side, and by fusing inactive barium nitrate with uranium nitrate, he has obtained a barium sulphate which has more or less radio-activity. From this he concludes it is probable that the radio-activity is due rather to a peculiar state of the barium than to a new chemical element. On the other hand, Becquerel has in a somewhat analogous way mixed inactive barium chlorid with uranium chlorid, and from the solution has obtained likewise a radio-active barium. But he finds that the increased activity in the barium salt is attended by a corresponding decrease in the radio-activity of the uranium. Hence it cannot be settled from these experiments whether the uranium salts possess a radio-activity of their own, which can by certain methods be communicated to barium salts, or whether the radio-activity is due to an impurity in the uranium which has thus far eluded isolation.

The director of the Blue Hill Meteorological Observatory, Mr. A. Lawrence Rotch, writes to 'Science' that the highest previous kite-flight was exceeded on July 19, when, by means of six kites attached at intervals to four and three-quarters miles of steel wire, the meteorograph was lifted 15,170 feet above Blue Hill, or 15,800 feet above the neighboring ocean. At the time that the temperature was 78° near the ground, it was about 30° at the highest point reached, the air being very dry and the wind blowing from the northwest with a velocity of twenty-six miles an hour. The altitude reached in this flight probably exceeds the greatest height at which meteorological observations have been made with a balloon in America. The highest observations that have been published were made by the late Professor Hazen, of the Weather Bureau, in an ascent from St. Louis, June 17, 1887, to a height of 15,400 feet.

The U. S. consul at St. Gall, Mr. Du Bois, sends to the Department of State the following account of the trial of the Zeppelin air-ship: At the invitation of Count Zeppelin, I was present at the trial ascent of his air-ship on the afternoon of July 2, at Manzell, on Lake Constance. At seven o'clock the great ship, 407 feet long and 39 feet in diameter, containing seventeen separate balloon compartments filled with hydrogen gas, was drawn out of the balloon house securely moored to the float. At the moment of the ascent the wind was blowing at a rate of about twenty-six feet per second, giving the operators a good opportunity of testing the ability of the air-wheels to propel the great ship against the wind. The cigar-shaped structure ascended slowly and gracefully to about thirty feet above the raft. The balances were adjusted so as to give the ship an ascending direction. The propellers were set in motion, and the air-ship, which has cost considerably over $200,000, started easily on its interesting trial trip. At first the ship moved east against the wind for about two miles, gracefully turned at an elevation of about 400 feet, and, making a rapid sail to the westward for about five miles, reached an altitude of 1,300 feet. It was then turned and headed once more east, and, traveling about a mile against the wind blowing at the rate of twenty-six feet per second, suddenly stopped; floating slowly backwards three miles to the west, it sank into the lake, the gondolas resting safely upon the water. The time of the trip was about fifty minutes; distance traveled, about ten miles; fastest time made, five miles in seventeen and one-half minutes. The cause of the sudden stoppage in the flight of the ship was proved to be a slight mishap to the steering apparatus, but the colossus floated gently with the wind until it settled upon the surface of the lake without taking any water. The raft was then brought up and the ship was easily placed upon it and brought back to the balloon house. The weight is 200 centners (22,000 pounds).

A joint meeting of the Royal Society and the Royal Astronomical Society has been held in London to hear preliminary reports from several British expeditions that went out to observe the recent eclipse of the sun. Mr. Christie, the astronomer royal, first presented an account of the observations made by himself and Mr. Dyson at Ovar, in Portugal. There totality lasted 84


seconds, and though the sky was rather hazy he secured some good photographs. The corona seemed distinctly inferior in brightness, structure and rays to that seen two years ago in India. Sir Norman Lockyer next described the observations made by the Solar Physics Observatory Expedition and the officers and men of H. M. S. Theseus at Santa Pola. Professor Turner spoke of the observations he had made with Mr. H. F. Newall in the grounds of the observatory near Algiers. From observations on the brightness of the corona he concluded that it was many times brighter than the moon—perhaps ten times as bright. Prof. Ralph Copeland described the observations he made on behalf of the joint committee at Santa Pola, endorsing Sir N. Lockyer's remarks as to the advantage of having the aid of a man-of-war. Mr. Evershed presented a preliminary report on his expedition to the south limit of totality. His reason for choosing a site at the limit of totality was that the flash spectrum was there visible very much longer. Unfortunately, he accepted the guidance of the Nautical Almanac Office, and found himself outside the line of totality—about two hundred meters according to his informants, who said a small speck of sunlight was visible all the time. He was successful in obtaining some fine photographs of the flash spectrum.

During the last session of Congress a law was enacted, commonly known as the Lacey Act, which places the preservation, distribution, introduction and restoration of game and other birds under the Department of Agriculture; regulates the importation of foreign birds and animals, prohibiting absolutely the introduction of certain injurious species and prohibits interstate traffic in birds or game killed in violation of State laws. Persons contemplating the importation of live animals or birds from abroad must obtain a special permit from the Secretary of Agriculture, and importers are advised to make application for permits in advance, in order to avoid annoyance and delay when shipments reach the customhouse. The law applies to single mammals, birds or reptiles, kept in cages as pets, as well as to large consignments intended for propagation in captivity or otherwise. Permits are not required for domesticated birds, such as chickens, ducks, geese, guinea fowl, pea fowl, pigeons or canaries; for parrots or for natural history specimens for museums or scientific collections. Permits must be obtained for all wild species of pigeons and ducks. In the case of ruminants (including deer, elk, moose, antelopes and also camels and llamas), permits will be issued, as heretofore, in the form prescribed for importation of domesticated animals. The introduction of the English or European house sparrow, the starling, the fruit bat or flying fox and the mongoose, is absolutely prohibited, and permits for their importation will not be issued under any circumstances.