Page:An Enquiry Concerning the Principles of Natural Knowledge.djvu/31

This page needs to be proofread.

force are measurable quantities, and their numerical expressions are dependent on the units chosen. The mass of a body is constant, so long as the body remains composed of the same self-identical material. Velocity, acceleration and force are vector quantities, namely they have direction as well as magnitude. They are thus representable by straight lines drawn from any arbitrary origin.

4.3 These laws of motion are among the foundations of science; and certainly any alteration in them must be such as to produce effects observable only under very exceptional circumstances. But, as is so often the case in science, a scrutiny of their meaning produces many perplexities.

In the first place we can sweep aside one minor difficulty. In our experience, a finite mass of matter occupies a volume and not a point. Evidently therefore the laws should be stated in an integral form, involving at certain points of the exposition greater elaboration of statement. These forms are stated (with somewhat abbreviated explanation) in dynamical treatises.

Secondly, Lorentz’s distinction between macroscopic equations and microscopic equations forces itself on us at once, by reason of the molecular nature of matter and the dynamical nature of heat. A body apparently formed of continuous matter with its intrinsic geometrical relations nearly invariable is in fact composed of agitated molecules. The equations of motion for such a body as used by an engineer or an astronomer are, in Lorentz’s nomenclature, macroscopic. In such equations even a differential element of volume is to be supposed to be sufficiently large to average out the diverse agitations of the molecules, and