Page:An Enquiry Concerning the Principles of Natural Knowledge.djvu/32

This page needs to be proofread.

to register only the general unbalanced residuum which to ordinary observation is the motion of the body.

The microscopic equations are those which apply to the individual molecules. It is at once evident that a series of such sets of equations is possible, in which the adjacent sets are macroscopic and microscopic relatively to each other. For example, we may penetrate below the molecule to the electrons and the core which compose it, and thus obtain infra-molecular equations. It is purely a question as to whether there are any observed phenomena which in this way receive their interpretation.

The inductive evidence for the validity of Newton’s equations of motion, within the experimental limits of accuracy, is obviously much stronger in the case of the macroscopic equations of the engineer and the astronomer than it is in the case of the microscopic equations of the molecule, and very much stronger than in the case of the infra-microscopic equations of the electron. But there is good evidence that even the infra-microscopic equations conform to Newton’s laws as a first approximation. The traces of deviation arise when the velocities are not entirely negligible compared to that of light.

4.4 What do we know about masses and about forces? We obtain our knowledge of forces by having some theory about masses, and our knowledge of masses by having some theory about forces. Our theories about masses enable us in certain circumstances to assign the numerical ratios of the masses of the bodies involved; then the observed motions of these bodies will enable us to register (by the use of Newton’s laws of motion) the directions and magnitudes of the forces