Experimental researches in electricity/New electrical state or condition of matter

§ 3. _New Electrical State or Condition of Matter._[A]

 [A] This section having been read at the Royal Society and reported
 upon, and having also, in consequence of a letter from myself to M.
 Hachette, been noticed at the French Institute, I feel bound to let it
 stand as part of the paper; but later investigations (intimated 73.
 76. 77.) of the laws governing those phenomena, induce me to think
 that the latter can be fully explained without admitting the
 electro-tonic state. My views on this point will appear in the second
 series of these researches.--M.F.

60. Whilst the wire is subject to either volta-electric or magneto-electric induction, it appears to be in a peculiar state; for it resists the formation of an electrical current in it, whereas, if in its common condition, such a current would be produced; and when left uninfluenced it has the power of originating a current, a power which the wire does not possess under common circumstances. This electrical condition of matter has not hitherto been recognised, but it probably exerts a very important influence in many if not most of the phenomena produced by currents of electricity. For reasons which will immediately appear (71.), I have, after advising with several learned friends, ventured to designate it as the _electro-ionic_ state.

61. This peculiar condition shows no known electrical effects whilst it continues; nor have I yet been able to discover any peculiar powers exerted, or properties possessed, by matter whilst retained in this state.

62. It shows no reaction by attractive or repulsive powers. The various experiments which have been made with powerful magnets upon such metals, as copper, silver, and generally those substances not magnetic, prove this point; for the substances experimented upon, if electrical conductors, must have acquired this state; and yet no evidence of attractive or repulsive powers has been observed. I have placed copper and silver discs, very delicately suspended on torsion balances in vacuo near to the poles of very powerful magnets, yet have not been able to observe the least attractive or repulsive force.

63. I have also arranged a fine slip of gold-leaf very near to a bar of copper, the two being in metallic contact by mercury at their extremities. These have been placed in vacuo, so that metal rods connected with the extremities of the arrangement should pass through the sides of the vessel into the air. I have then moved powerful magnetic poles, about this arrangement, in various directions, the metallic circuit on the outside being sometimes completed by wires, and sometimes broken. But I never could obtain any sensible motion of the gold-leaf, either directed to the magnet or towards the collateral bar of copper, which must have been, as far as induction was concerned, in a similar state to itself.

64. In some cases it has been supposed that, under such circumstances, attractive and repulsive forces have been exhibited, i.e. that such bodies have become slightly magnetic. But the phenomena now described, in conjunction with the confidence we may reasonably repose in M. Ampère's theory of magnetism, tend to throw doubt on such cases; for if magnetism depend upon the attraction of electrical currents, and if the powerful currents at first excited, both by volta-electric and magneto-electric induction, instantly and naturally cease (12. 28. 47.), causing at the same time an entire cessation of magnetic effects at the galvanometer needle, then there can be little or no expectation that any substances not partaking of the peculiar relation in which iron, nickel, and one or two other bodies, stand, should exhibit magneto-attractive powers. It seems far more probable, that the extremely feeble permanent effects observed have been due to traces of iron, or perhaps some other unrecognised cause not magnetic.

65. This peculiar condition exerts no retarding or accelerating power upon electrical currents passing through metal thus circumstanced (20. 33.). Neither could any such power upon the inducing current itself be detected; for when masses of metal, wires, helices, &c. were arranged in all possible ways by the side of a wire or helix, carrying a current measured by the galvanometer (20.), not the slightest permanent change in the indication of the instrument could be perceived. Metal in the supposed peculiar state, therefore, conducts electricity in all directions with its ordinary facility, or, in other words, its conducting power is not sensibly altered by it.

66. All metals take on the peculiar state. This is proved in the preceding experiments with copper and iron (9.), and with gold, silver, tin, lead, zinc, antimony, bismuth, mercury, &c. by experiments to be described in the fourth part (132.), admitting of easy application. With regard to iron, the experiments prove the thorough and remarkable independence of these phenomena of induction, and the ordinary magnetical appearances of that metal.

67. This state is altogether the effect of the induction exerted, and ceases as soon as the inductive force is removed. It is the same state, whether produced by the collateral passage of voltaic currents (26.), or the formation of a magnet (34. 36.), or the mere approximation of a magnet (39. 50.); and is a strong proof in addition to those advanced by M. Ampère, of the identity of the agents concerned in these several operations. It probably occurs, momentarily, during the passage of the common electric spark (24.), and may perhaps be obtained hereafter in bad conductors by weak electrical currents or other means (74. 76).

68. The state appears to be instantly assumed (12.), requiring hardly a sensible portion of time for that purpose. The _difference_ of time between volta-electric and magneto-electric induction, rendered evident by the galvanometer (59.), may probably be thus explained. When a voltaic current is sent through one of two parallel wires, as those of the hollow helix (34.), a current is produced in the other wire, as brief in its continuance as the time required for a single action of this kind, and which, by experiment, is found to be inappreciably small. The action will seem still more instantaneous, because, as there is an accumulation of power in the poles of the battery before contact, the first rush of electricity in the wire of communication is greater than that sustained after the contact is completed; the wire of induction becomes at the moment electro-tonic to an equivalent degree, which the moment after sinks to the state in which the continuous current can sustain it, but in sinking, causes an opposite induced current to that at first produced. The consequence is, that the first induced wave of electricity more resembles that from the discharge of an electric jar, than it otherwise would do.

69. But when the iron cylinder is put into the same helix (31.), previous to the connexion being made with the battery, then the current from the latter may be considered as active in inducing innumerable currents of a similar kind to itself in the iron, rendering it a magnet. This is known by experiment to occupy time; for a magnet so formed, even of soft iron, does not rise to its fullest intensity in an instant, and it may be because the currents within the iron are successive in their formation or arrangement. But as the magnet can induce, as well as the battery current, the combined action of the two continues to evolve induced electricity, until their joint effect is at a maximum, and thus the existence of the deflecting force is prolonged sufficiently to overcome the inertia of the galvanometer needle.

70. In all those cases where the helices or wires are advanced towards or taken from the magnet (50. 55.), the direct or inverted current of induced electricity continues for the time occupied in the advance or recession; for the electro-tonic state is rising to a higher or falling to a lower degree during that time, and the change is accompanied by its corresponding evolution of electricity; but these form no objections to the opinion that the electro-tonic state is instantly assumed.

71. This peculiar state appears to be a state of tension, and may be considered as _equivalent_ to a current of electricity, at least equal to that produced either when the condition is induced or destroyed. The current evolved, however, first or last, is not to be considered a measure of the degree of tension to which the electro-tonic state has risen; for as the metal retains its conducting powers unimpaired (65.), and as the electricity evolved is but for a moment, (the peculiar state being instantly assumed and lost (68.),) the electricity which may be led away by long wire conductors, offering obstruction in their substance proportionate to their small lateral and extensive linear dimensions, can be but a very small portion of that really evolved within the mass at the moment it assumes this condition. Insulated helices and portions of metal instantly assumed the state; and no traces of electricity could be discovered in them, however quickly the contact with the electrometer was made, after they were put under induction, either by the current from the battery or the magnet. A single drop of water or a small piece of moistened paper (23. 56.) was obstacle sufficient to stop the current through the conductors, the electricity evolved returning to a state of equilibrium through the metal itself, and consequently in an unobserved manner.

72. The tension of this state may therefore be comparatively very great. But whether great or small, it is hardly conceivable that it should exist without exerting a reaction upon the original inducing current, and producing equilibrium of some kind. It might be anticipated that this would give rise to a retardation of the original current; but I have not been able to ascertain that this is the case. Neither have I in any other way as yet been able to distinguish effects attributable to such a reaction.

73. All the results favour the notion that the electro-tonic state relates to the particles, and not to the mass, of the wire or substance under induction, being in that respect different to the induction exerted by electricity of tension. If so, the state may be assumed in liquids when no electrical current is sensible, and even in non-conductors; the current itself, when it occurs, being as it were a contingency due to the existence of conducting power, and the momentary propulsive force exerted by the particles during their arrangement. Even when conducting power is equal, the currents of electricity, which as yet are the only indicators of this state, may be unequal, because of differences as to numbers, size, electrical condition, &c. &c. in the particles themselves. It will only be after the laws which govern this new state are ascertained, that we shall be able to predict what is the true condition of, and what are the electrical results obtainable from, any particular substance.

74. The current of electricity which induces the electro-tonic state in a neighbouring wire, probably induces that state also in its own wire; for when by a current in one wire a collateral wire is made electro-tonic, the latter state is not rendered any way incompatible or interfering with a current of electricity passing through it (62.). If, therefore, the current were sent through the second wire instead of the first, it does not seem probable that its inducing action upon the second would be less, but on the contrary more, because the distance between the agent and the matter acted upon would be very greatly diminished. A copper bolt had its extremities connected with a galvanometer, and then the poles of a battery of one hundred pairs of plates connected with the bolt, so as to send the current through it; the voltaic circuit was then suddenly broken, and the galvanometer observed for any indications of a return current through the copper bolt due to the discharge of its supposed electro-tonic state. No effect of the kind was obtained, nor indeed, for two reasons, ought it to be expected; for first, as the cessation of induction and the discharge of the electro-tonic condition are simultaneous, and not successive, the return current would only be equivalent to the neutralization of the last portion of the inducing current, and would not therefore show any alteration of direction; or assuming that time did intervene, and that the latter current was really distinct from the former, its short, sudden character (12. 26.) would prevent it from being thus recognised.

75. No difficulty arises, I think, in considering the wire thus rendered electro-tonic by its own current more than by any external current, especially when the apparent non-interference of that state with currents is considered (62. 71.). The simultaneous existence of the conducting and electro-tonic states finds an analogy in the manner in which electrical currents can be passed through magnets, where it is found that both the currents passed, and those of the magnets, preserve all their properties distinct from each other, and exert their mutual actions.

76. The reason given with regard to metals extends also to fluids and all other conductors, and leads to the conclusion that when electric currents are passed through them they also assume the electro-tonic state. Should that prove to be the case, its influence in voltaic decomposition, and the transference of the elements to the poles, can hardly be doubted. In the electro-tonic state the homogeneous particles of matter appear to have assumed a regular but forced electrical arrangement in the direction of the current, which if the matter be undecomposable, produces, when relieved, a return current; but in decomposable matter this forced state may be sufficient to make an elementary particle leave its companion, with which it is in a constrained condition, and associate with the neighbouring similar particle, in relation to which it is in a more natural condition, the forced electrical arrangement being itself discharged or relieved, at the same time, as effectually as if it had been freed from induction. But as the original voltaic current is continued, the electro-tonic state may be instantly renewed, producing the forced arrangement of the compound particles, to be as instantly discharged by a transference of the elementary particles of the opposite kind in opposite directions, but parallel to the current. Even the differences between common and voltaic electricity, when applied to effect chemical decomposition, which Dr. Wollaston has pointed out[A], seem explicable by the circumstances connected with the induction of electricity from these two sources (25.). But as I have reserved this branch of the inquiry, that I might follow out the investigations contained in the present paper, I refrain (though much tempted) from offering further speculations.

 [A] Philosophical Transactions, 1801, p. 247.

77. Marianini has discovered and described a peculiar affection of the surfaces of metallic discs, when, being in contact with humid conductors, a current of electricity is passed through them; they are then capable of producing a reverse current of electricity, and Marianini has well applied the effect in explanation of the phenomena of Ritter's piles[A]. M.A. de la Rive has described a peculiar property acquired by metallic conductors, when being immersed in a liquid as poles, they have completed, for some time, the voltaic circuit, in consequence of which, when separated from the battery and plunged into the same fluid, they by themselves produce an electric current[B]. M.A. Van Beek has detailed cases in which the electrical relation of one metal in contact with another has been preserved after separation, and accompanied by its corresponding chemical effects[C]. These states and results appear to differ from the electro-tonic state and its phenomena; but the true relation of the former to the latter can only be decided when our knowledge of all these phenomena has been enlarged.

 [A] Annales de Chimie, xxxviii. 5.
 [B] Ibid. xxviii. 190.
 [C] Ibid. xxxviii. 49.

78. I had occasion in the commencement of this paper (2.) to refer to an experiment by Ampère, as one of those dependent upon the electrical induction of currents made prior to the present investigation, and have arrived at conclusions which seem to imply doubts of the accuracy of the experiment (62. &c.); it is therefore due to M. Ampère that I should attend to it more distinctly. When a disc of copper (says M. Ampère) was suspended by a silk thread and surrounded by a helix or spiral, and when the charge of a powerful voltaic battery was sent through the spiral, a strong magnet at the same time being presented to the copper disc, the latter turned at the moment to take a position of equilibrium, exactly as the spiral itself would have turned had it been free to move. I have not been able to obtain this effect, nor indeed any motion; but the cause of my failure in the _latter_ point may be due to the momentary existence of the current not allowing time for the inertia of the plate to be overcome (11. 12.). M. Ampère has perhaps succeeded in obtaining motion from the superior delicacy and power of his electro-magnetical apparatus, or he may have obtained only the motion due to cessation of action. But all my results tend to invert the sense of the proposition stated by M. Ampère, "that a current of electricity tends to put the electricity of conductors near which it passes in motion in the same direction," for they indicate an opposite direction for the produced current (26. 53.); and they show that the effect is momentary, and that it is also produced by magnetic induction, and that certain other extraordinary effects follow thereupon.

79. The momentary existence of the phenomena of induction now described is sufficient to furnish abundant reasons for the uncertainty or failure of the experiments, hitherto made to obtain electricity from magnets, or to effect chemical decomposition or arrangement by their means[A].

 [A] The Lycée, No. 36, for January 1st, has a long and rather
 premature article, in which it endeavours to show anticipations by
 French philosophers of my researches. It however mistakes the
 erroneous results of MM. Fresnel and Ampère for true ones, and then
 imagines my true results are like those erroneous ones. I notice it
 here, however, for the purpose of doing honour to Fresnel in a much
 higher degree than would have been merited by a feeble anticipation of
 the present investigations. That great philosopher, at the same time
 with myself and fifty other persons, made experiments which the
 present paper proves could give no expected result. He was deceived
 for the moment, and published his imaginary success; but on more
 carefully repeating his trials, he could find no proof of their
 accuracy; and, in the high and pure philosophic desire to remove error
 as well as discover truth, he recanted his first statement. The
 example of Berzelius regarding the first Thorina is another instance
 of this fine feeling; and as occasions are not rare, it would be to
 the dignity of science if such examples were more frequently
 followed.--February 10th, 1832.

80. It also appears capable of explaining fully the remarkable phenomena observed by M. Arago between metals and magnets when neither are moving (120.), as well as most of the results obtained by Sir John Herschel, Messrs. Babbage, Harris, and others, in repeating his experiments; accounting at the same time perfectly for what at first appeared inexplicable; namely, the non-action of the same metals and magnets when at rest. These results, which also afford the readiest means of obtaining electricity from magnetism, I shall now proceed to describe.