Heroes of the Telegraph (1891)
by John Munro
Chapter 3: Samuel Morse
3813393Heroes of the Telegraph — Chapter 3: Samuel Morse1891John Munro


SAMUEL MORSE.

SAMUEL MORSE.

CHAPTER III.

SAMUEL MORSE.

Cooke and Wheatstone were the first to introduce a public telegraph worked by electro-magnetism; but it had the disadvantage of not marking down the message. There was still room for an instrument which would leave a permanent record that might be read at leisure, and this was the invention of Samuel Finley Breeze Morse. He was born at the foot of Breed's Hill, in Charlestown, Massachusetts, on the 27th of April, 1791. The place was a little over a mile from where Benjamin Franklin was born, and the date was a little over a year after he died. His family was of British origin. Anthony Morse, of Marlborough, in Wiltshire, had emigrated to America in 1635, and settled in Newbury, Massachusetts, He and his descendants prospered. The grandfather of Morse was a member of the Colonial and State Legislatures, and his father, Jedediah Morse, D.D., was a well-known divine of his day, and the author of Morse's American Geography, as well as a compiler of a Universal Gazetteer. His mother was Elizabeth Ann Breeze, apparently of Welsh extraction, and the grand-daughter of Samuel Finley, a distinguished President of the Princeton College. Jedediah Morse is reputed a man of talent, industry, and vigour, with high aims for the good of his fellow-men, ingenious to conceive, resolute in action, and sanguine of success. His wife is described as a woman of calm, reflective mind, animated conversation, and engaging manners.

They had two other sons besides Samuel, the second of whom, Sidney E. Morse, was founder of the New York Observer, an able mathematician, author of the Art of Cerography, or engraving upon wax, to stereotype from, and inventor of a barometer for sounding the deep-sea. Sidney was the trusted friend and companion of his elder brother.

At the age of four Samuel was sent to an infant school kept by an old lady, who being lame, was unable to leave her chair, but carried her authority to the remotest parts of her dominion by the help of a long rattan. Samuel, like the rest, had felt the sudden apparition of this monitor. Having scratched a portrait of the dame upon a chest of drawers with the point of a pin, he was called out and summarily punished. Years later, when he became notable, the drawers were treasured by one of his admirers.

He entered a preparatory school at Andover, Mass., when he was seven years old, and showed himself an eager pupil. Among other books, he was delighted with Plutarch's Lives, and at thirteen he composed a biography of Demosthenes, long preserved by his family. A year later he entered Yale College as a freshman.

During his curriculum he attended the lectures of Professor Jeremiah Day on natural philosophy and Professor Benjamin Sieliman on chemistry, and it was then he imbibed his earliest knowledge of electricity. In 1809-10 Dr. Day was teaching from Enfield's text-book on philosophy, that 'if the (electric) circuit be interrupted, the fluid will become visible, and when: it passes it will leave an impression upon any intermediate body,' and he illustrated this by sending the spark through a metal chain, so that it became visible between the links, and by causing it to perforate paper. Morse afterwards declared this experiment to have been the seed which rooted in his mind and grew into the 'invention of the telegraph.'

It is not evident that Morse had any distinct idea of the electric telegraph in these days; but amidst his lessons in literature and philosophy he took a special interest in the sciences of electricity and chemistry. He became acquainted with the voltaic battery through the lectures of his friend, Professor Sieliman; and we are told that during one of his vacations at Yale he made a series of electrical experiments with Dr. Dwight. Some years later he resumed these studies under his friend Professor James Freeman Dana, of the University of New York, who exhibited the electro-magnet to his class in 1827, and also under Professor Renwick, of Columbia College.

Art seems to have had an equal if not a greater charm than science for Morse at this period. A boy of fifteen, he made a water-colour sketch of his family sitting round the table; and while a student at Yale he relieved his father, who was far from rich, of a part of his education by painting miniatures on ivory, and selling them to his companions at five dollars a-piece. Before he was nineteen he completed a painting of the 'Landing of the Pilgrims at Plymouth,' which formerly hung in the office of the Mayor, at Charlestown, Massachusetts.

On graduating at Yale, in 1810, he devoted himself to Art, and became a pupil of Washington Allston, the well-known American painter. He accompanied Allston to Europe in 1811, and entered the studio of Benjamin West, who was then at the zenith of his reputation. The friendship of West, with his own introductions and agreeable personality, enabled him to move in good society, to which he was always partial. William Wilberforce, Zachary Macaulay, father of the historian, Coleridge, and Copley, were among his acquaintances. Leslie, the artist, then a struggling genius like himself, was his fellow-lodger. His heart was evidently in the profession of his choice. 'My passion for my art,' he wrote to his mother, in 1812, 'is so firmly rooted that I am confident no human power could destroy it. The more I study the greater I think is its claim to the appellation of divine. I am now going to begin a picture of the death of Hercules, the figure to be as large as life.'

After he had perfected this work to his own eyes, he showed it, with not a little pride, to Mr. West, who after scanning it awhile said, 'Very good, very good. Go on and finish it.' Morse ventured to say that it was finished. 'No! no! no!' answered West; 'see there, and there, and there. There is much to be done yet. Go on and finish it.' Each time the pupil showed it the master said, 'Go on and finish it.'[1] This was a lesson in thoroughness of work and attention to detail which was not lost on the student. The picture was exhibited at the Royal Academy, in Somerset House, during the summer of 1813, and West declared that if Morse were to live to his own age he would never make a better composition. The remark is equivocal, but was doubtless intended as a compliment to the precocity of the young painter.

In order to be correct in the anatomy he had first modelled the figure of his Hercules in clay, and this cast, by the advice of West, was entered in competition for a prize in sculpture given by the Society of Arts. It proved successful, and on May 13 the sculptor was presented with the prize and a gold medal by the Duke of Norfolk before a distinguished gathering in the Adelphi.

Flushed with his triumph, Morse determined to compete for the prize of fifty guineas and a gold medal offered by the Royal Academy for the best historical painting, and took for his subject, 'The Judgment of Jupiter in the case of Apollo, Marpessa, and Idas.' The work was finished to the satisfaction of West, but the painter was summoned home. He was still, in part at least, depending on his father, and had been abroad a year longer than the three at first intended. During this time he had been obliged to pinch himself in a thousand ways in order to eke out his modest allowance. 'My drink is water, porter being too expensive,' he wrote to his parents. 'I have had no new clothes for nearly a year. My best are threadbare, and my shoes are out at the toes. My stockings all want to see my mother, and my hat is hoary with age.'

Mr. West recommended him to stay, since the rules of the competition required the winner to receive the prize in person. But after trying in vain to get this regulation waived, he left for America with his picture, having, a few days prior to his departure, dined with Mr. Wilberforce as the guns of Hyde Park were signalling the victory of Waterloo.

Arriving in Boston on October 18, he lost no time in renting a studio. His fame had preceded him, and he became the lion of society. His 'Judgment of Jupiter' was exhibited in the town, and people flocked to see it. But no one offered to buy it. If the line of high art he had chosen had not supported him in England, it was tantamount to starvation in the rawer atmosphere of America. Even in Boston, mellowed though it was by culture, the classical was at a discount. Almost penniless, and fretting under his disappointment, he went to Concord, New Hampshire, and contrived to earn a living by painting cabinet portraits. Was this the end of his ambitious dreams?

Money was needful to extricate him from this drudgery and let him follow up his aspirations. Love may have been a still stronger motive for its acquisition. So he tried his hand at invention, and, in conjunction with his brother Sidney, produced what was playfully described as 'Morse's Patent Metallic Double-Headed Ocean-Drinker and Deluge-Spouter Pump-Box.' The pump was quite as much admired as the 'Jupiter,' and it proved as great a failure.

Succeeding as a portrait painter, he went, in 1818, on the invitation of his uncle, Dr. Finley, to Charleston, in South Carolina, and opened a studio there. After a single season he found himself in a position to marry, and on October 1, 1818, was united to Lucretia P. Walker, of Concord, New Hampshire, a beautiful and accomplished lady. He thrived so well in the south that he once received as many as one hundred and fifty orders in a few weeks; and his reputation was such that he was honoured with a commission from the Common Council of Charleston to execute a portrait of James Monroe, then President of the United States. It was regarded as a masterpiece. In January, 1821, he instituted the South Carolina Academy of Fine Arts, which is now extinct.

After four years of life in Charleston he returned to the north with savings to the amount of £600, and settled in New York. He devoted eighteen months to the execution of a large painting of the House of Representatives in the Capitol at Washington; but its exhibition proved a loss, and in helping his brothers to pay his father's debts the remains of his little fortune were swept away. He stood next to Allston as an American historical painter, but all his productions in that line proved a disappointment. The public would not buy them. On the other hand, he received an order from the Corporation of New York for a portrait of General Lafayette, the hero of the hour.

While engaged on this work he lost his wife in February, 1825, and then his parents. In 1829 he visited Europe, and spent his time among the artists and art galleries of England, France, and Italy. In Paris he undertook a picture of the interior of the Louvre, showing some of the masterpieces in miniature, but it seems that nobody purchased it. He expected to be chosen to illustrate one of the vacant panels in the Rotunda of the Capitol at Washington; but in this too he was mistaken. However, some fellow-artists in America, thinking he had deserved the honour, collected a sum of money to assist him in painting the composition he had fixed upon: 'The Signing of the First Compact on Board the Mayflower.'

In a far from hopeful mood after his three years' residence abroad he embarked on the packet Sully, Captain Pell, and sailed from Havre for New York on October 1, 1832. Among the passengers was Dr. Charles T. Jackson, of Boston, who had attended some lectures on electricity in Paris, and carried an electro-magnet in his trunk. One day while Morse and Dr. Jackson, with a few more, sat round the luncheon table in the cabin, he began to talk of the experiments he had witnessed. Some one asked if the speed of the electricity was lessened by its passage through a long wire, and Dr. Jackson, referring to a trial of Faraday, replied that the current was apparently instantaneous. Morse, who probably remembered his old lessons in the subject, now remarked that if the presence of the electricity could be rendered visible at any point of the circuit he saw no reason why intelligence might not be sent by this means.

The idea became rooted in his mind, and engrossed his thoughts. Until far into the night he paced the deck discussing the matter with Dr. Jackson, and pondering it in solitude. Ways of rendering the electricity sensible at the far end of the line were considered. The spark might pierce a band of travelling paper, as Professor Day had mentioned years before; it might decompose a chemical solution, and leave a stain to mark its passage, as tried by Mr. Dyar in 1827; Or it could excite an electro-magnet, which, by attracting a piece of soft iron, would inscribe the passage with a pen or pencil. The signals could be made by very short currents or jets of electricity, according to a settled code. Thus a certain number of jets could represent a corresponding numeral, and the numeral would, in its turn, represent a word in the language. To decipher the message, a special code-book or dictionary would be required. In order to transmit the currents through the line, he devised a mechanical sender, in which the circuit would be interrupted by a series of types carried on a port-rule or composing-stick, which travelled at a uniform speed. Each type would have a certain number of teeth or projections on its upper face, and as it was passed through a gap in the circuit the teeth would make or break the current. At the other end of the line the currents thus transmitted would excite the electro-magnet, actuate the pencil, and draw a zig-zag line on the paper, every angle being a distinct signal, and the groups of signals representing a word in the code.

During the voyage of six weeks the artist jotted his crude ideas in his sketch-book, which afterwards became a testimony to their date. That he cherished hopes of his invention may be gathered from his words on landing, 'Well, Captain Pell, should you ever hear of the telegraph one of these days as the wonder of the world, remember the discovery was made on the good ship Sully.'

Soon after his return his brothers gave him a room on the fifth floor of a house at the corner of Nassau and Beekman Streets, New York. For a long time it was his studio and kitchen, his laboratory and bedroom. With his livelihood to earn by his brush, and his invention to work out, Morse was now fully occupied. His diet was simple; he denied himself the pleasures of society, and employed his leisure in making models of his types. The studio was an image of his mind at this epoch. Rejected pictures looked down upon his clumsy apparatus, type-moulds lay among plaster-casts, the paint-pot jostled the galvanic battery, and the easel shared his attention with the lathe. By degrees the telegraph allured him from the canvas, and he only painted enough to keep the wolf from the door. His national picture, 'The Signing of the First Compact on Board the Mayflower,' was never finished, and the 300 dollars which had been subscribed for it were finally returned with interest.

For Morse by nature was proud and independent, with a sensitive horror of incurring debt. He would rather endure privation than solicit help or lie under a humiliating obligation. His mother seems to have been animated with a like spirit, for the Hon. Amos Kendall informs us that she had suffered much through the kindness of her husband in becoming surety for his friends, and that when she was dying she exacted a promise from her son that he would never endanger his peace of mind and the comfort of his home by doing likewise.

During the two and a half years from November, 1832, to the summer of 1835 he was obliged to change his residence three times, and want of money prevented him from combining the several parts of his invention into a working whole. In 1835, however, his reputation as an historical painter, and the esteem in which he was held as a man of culture and refinement, led to his appointment as the first Professor of the Literature of the Arts of Design in the newly founded University of the city of New York. In the month of July he took up his quarters in the new buildings of the University at Washington Square, and was henceforth able to devote more time to his apparatus. The same year Professor Daniell, of King's College, London, brought out his constant-current battery, which befriended Morse in his experiments, as it afterwards did Cooke and Wheatstone, Hitherto the voltaic battery had been a source of trouble, owing to the current becoming weak as the battery was kept in action.

The length of line through which Morse could work his apparatus was an important point to be determined, for it was known that the current grows feebler in proportion to the resistance of the wire it traverses. Morse saw a way out of the difficulty, as Davy, Cooke, and Wheatstone did, by the device known as the relay. Were the current too weak to effect the marking of a message, it might nevertheless be sufficiently strong to open and close the circuit of a local battery which would print the signals. Such relays and local batteries, fixed at intervals along the line, as post-horses on a turnpike, would convey the message to an immense distance. 'If I can succeed in working a magnet ten miles,' said Morse,'I can go round the globe. It matters not how delicate the movement may be.'

According to his own statement, he devised the relay in 1836 or earlier; but it was not until the beginning of 1837 that he explained the device, and showed the working of his apparatus to his friend, Mr. Leonard D. Gale, Professor of Chemistry in the University. This gentleman took a lively interest in the apparatus, and proved a generous ally of the inventor. Until then Morse had only tried his recorder on a few yards of wire, the battery was a single pair of plates, and the electro-magnet was of the elementary sort employed by Moll, and illustrated in the older books. The artist, indeed, was very ignorant of what had been done by other electricians; and Professor Gale was able to enlighten him. When Gale acquainted him with some results in telegraphing obtained by Mr. Barlow, he said he was not aware that anyone had even conceived the notion of using the magnet for such a purpose. The researches of Professor Joseph Henry on the electro-magnet, in 1830, were equally unknown to Morse, until Professor Gale drew his attention to them, and in accordance with the results, suggested that the simple electro-magnet, with a few turns of thick wire which he employed, should be replaced by one having a coil of long thin wire. By this change a much feebler current would be able to excite the magnet, and the recorder would mark through a greater length of line. Henry himself, in 1832, had devised a telegraph similar to that of Morse, and signalled through a mile of wire, by causing the armature of his electro-magnet to strike a bell. This was virtually the first electro-magnetic acoustic telegraph.[2]

The year of the telegraph—1837—was an important one for Morse, as it was for Cooke and Wheatstone. In the privacy of his rooms he had constructed, with his own hands, a model of his apparatus, and fortune began to favour him. Thanks to Professor Gale, he improved the electro-magnet, employed a more powerful battery, and was thus able to work through a much longer line. In February, 1837, the American House of Representatives passed a resolution asking the Secretary of the Treasury to report on the propriety of establishing a system of telegraphs for the United States, and on March 10 issued a circular of inquiry, which fell into the hands of the inventor, and probably urged him to complete his apparatus, and bring it under the notice of the Government. Lack of mechanical skill, ignorance of electrical science, as well as want of money, had so far kept it back.

But the friend in need whom he required was nearer than he anticipated. On Saturday, September 2, 1837, while Morse was exhibiting the model to Professor Daubeny, of Oxford, then visiting the States, and others, a young man named Alfred Vail became one of the spectators, and was deeply impressed with the results. Vail was born in 1807, a son of Judge Stephen Vail, master of the Speedwell ironworks at Morristown, New Jersey. After leaving the village school his father took him and his brother George into the works; but though Alfred inherited a mechanical turn of mind, he longed for a higher sphere, and on attaining to his majority he resolved to enter the Presbyterian Church. In 1832 he went to the University of the city of New York, where he graduated in October, 1836. Near the close of the term, however, his health failed, and he was constrained to relinquish his clerical aims. While in doubts as to his future he chanced to see the telegraph, and that decided him. He says: 'I accidentally and without invitation called upon Professor Morse at the University, and found him with Professors Torrey and Daubeny in the mineralogical cabinet and lecture-room of Professor Gale, where Professor Morse was exhibiting to these gentlemen an apparatus which he called his Electro-Magnetic Telegraph. There were wires suspended in the room running from one end of it to the other, and returning many times, making a length of seventeen hundred feet. The two ends of the wire were connected with an electro-magnet fastened to a vertical wooden frame. In front of the magnet was its armature, and also a wooden lever or arm fitted at its extremity to hold a lead-pencil.... I saw this instrument work, and became thoroughly acquainted with the principle of its operation, and, I may say, struck with the rude machine, containing, as I believed, the germ of what was destined to produce great changes in the conditions and relations of mankind. I well recollect the impression which was then made upon my mind. I rejoiced to think that I lived in such a day, and my mind contemplated the future in which so grand and mighty an agent was about to be introduced for the benefit of the world. Before leaving the room in which I beheld for the first time this magnificent invention, I asked Professor Morse if he intended to make an experiment on a more extended line of conductors. He replied that he did, but that he desired pecuniary assistance to carry out his plans. I promised him assistance provided he would admit me into a share of the invention, to which proposition he assented. I then returned to my boarding-house, locked the door of my room, threw myself upon the bed, and gave myself up to reflection upon the mighty results which were certain to follow the introduction of this new agent in meeting and serving the wants of the world. With the atlas in my hand I traced the most important lines which would most certainly be erected in the United States, and calculated their length. The question then rose in my mind, whether the electro-magnet could be made to work through the necessary lengths of line, and after much reflection I came to the conclusion that, provided the magnet would work even at a distance of eight or ten miles, there could be no risk in embarking in the enterprise. And upon this I decided in my own mind to sink or swim with it.'

Young Vail applied to his father, who was a man of enterprise and intelligence. He it was who forged the shaft of the Savannah, the first steamship which crossed the Atlantic. Morse was invited to Speedwell with his apparatus, that the judge might see it for himself, and the question of a partnership was mooted. Two thousand dollars were required to procure the patents and construct an instrument to bring before the Congress. In spite of a financial depression, the judge was brave enough to lend his assistance, and on September 23, 1837, an agreement was signed between the inventor and Alfred Vail, by which the latter was to construct, at his own expense, a model for exhibition to a Committee of Congress, and to secure the necessary patents for the United States. In return Vail was to receive one-fourth of the patent rights in that country. Provision was made also to give Vail an interest in any foreign patents he might furnish means to obtain. The American patent was obtained by Morse on October 3, 1837. He had returned to New York, and was engaged in the preparation of his dictionary.

For many months Alfred Vail worked in a secret room at the iron factory making the new model, his only assistant being an apprentice of fifteen, William Baxter, who subsequently designed the Baxter engine, and died in 1885. When the workshop was rebuilt this room was preserved as a memorial of the telegraph, for it was here that the true Morse instrument, such as we know it, was constructed.

It must be remembered that in those days almost everything they wanted had either to be made by themselves or appropriated to their purpose. Their first battery was set up in a box of cherry-wood, parted into cells, and lined with bees-wax; their insulated wire was that used by milliners for giving outline to the 'sky-scraper' bonnets of that day. The first machine made at Speedwell was a copy of that devised by Morse, but as Vail grew more intimate with the subject his own ingenuity came into play, and he soon improved on the original. The pencil was discarded for a fountain pen, and the zig-zag signals for the short and long lines now termed 'dots' and 'dashes.'

This important alteration led him to the 'Morse alphabet,' or code of signals, by which a letter is transmitted as a group of short and long jets, indicated as 'dots' and 'dashes' on the paper. Thus the letter e, which is so common in English words, is now transmitted by a short jet which makes a dot; t, another common letter, by a long jet, making a dash; and q, a rare letter, by the group dash, dash, dot, dash. Vail tried to compute the relative frequency of all the letters in order to arrange his alphabet; but a happy idea enabled him to save his time. He went to the office of the local newspaper, and found the result he wanted in the type-cases of the compositors. The Morse, or rather Vail code, is at present the universal telegraphic code of symbols, and its use is extending to other modes of signalling-for example, by flags, lights, or trumpets.

The hard-fisted farmers of New Jersey, like many more at that date, had no faith in the 'telegraph machine,' and openly declared that the judge had been a fool for once to put his money in it. The judge, on his part, wearied with the delay, and irritated by the sarcasm of his neighbours, grew dispirited and moody. Alfred, and Morse, who had come to assist, were careful to avoid meeting him. At length, on January 6, 1838, Alfred told the apprentice to go up to the house and invite his father to come down to see the telegraph at work. It was a cold day, but the boy was so eager that he ran off without putting on his coat. In the sitting-room he found the judge with his hat on as if about to go out, but seated before the fire leaning his head on his hand, and absorbed in gloomy reflection. 'Well, William?' he said, looking up, as the boy entered; and when the message was delivered he started to his feet. In a few minutes he was standing in the experimental-room, and the apparatus was explained. Calling for a piece of paper he wrote upon it the words, 'A patient waiter is no loser,' and handed it to Alfred, with the remark, 'If you can send this, and Mr. Morse can read it at the other end, I shall be convinced.' The message was transmitted, and for a moment the judge was fairly mastered by his feelings.

The apparatus was then exhibited in New York, in Philadelphia, and subsequently before the Committee of Congress at Washington. At first the members of this body were somewhat incredulous about the merits of the uncouth machine; but the Chairman, the Hon. Francis O. J. Smith, of Maine, took an interest in it, and secured a full attendance of the others to see it tried through ten miles of wire one day in February. The demonstration convinced them, and many were the expressions of amazement from their lips. Some said, 'The world is coming to an end,' as people will when it is really budding, and putting forth symptoms of a larger life. Others exclaimed, 'Where will improvements and discoveries stop?' and 'What would Jefferson think should he rise up and witness what we have just seen?' One gentleman declared that, 'Time and space are now annihilated.'

The practical outcome of the trial was that the Chairman reported a Bill appropriating 30,000 dollars for the erection of an experimental line between Washington and Baltimore. Mr. Smith was admitted to a fourth share in the invention, and resigned his seat in Congress to become legal adviser to the inventors. Claimants to the invention of the telegraph now began to spring up, and it was deemed advisable for Mr. Smith and Morse to proceed to Europe and secure the foreign patents. Alfred Vail undertook to provide an instrument for exhibition in Europe.

Among these claimants was Dr. Jackson, chemist and geologist, of Boston, who had been instrumental in evoking the idea of the telegraph in the mind of Morse on board the Sully. In a letter to the New York Observer he went further than this, and claimed to be a joint inventor; but Morse indignantly repudiated the suggestion. He declared that his instrument was not mentioned either by him or Dr. Jackson at the time, and that they had made no experiments together. 'It is to Professor Gale that I am most of all indebted for substantial and effective aid in many of my experiments,' he said; 'but he prefers no claim of any kind.'

Morse and Smith arrived in London during the month of June. Application was immediately made for a British patent, but Cooke and Wheatstone and Edward Davy, it seems, opposed it; and although Morse demonstrated that his was different from theirs, the patent was refused, owing to a prior publication in the London Mechanics' Magazine for February 18, 1838, in the form of an article quoted from Silliman's American Journal of Science for October, 1837. Morse did not attempt to get this legal disqualification set aside. In France he was equally unfortunate. His instrument was exhibited by Arago at a meeting of the Institute, and praised by Humboldt and Gay-Lussac; but the French patent law requires the invention to be at work in France within two years, and when Morse arranged to erect a telegraph line on the St. Germain Railway, the Government declined to sanction it, on the plea that the telegraph must become a State monopoly.

All his efforts to introduce the invention into Europe were futile, and he returned disheartened to the United States on April 15, 1839. While in Paris, he had met M. Daguerre, who, with M. Niepce, had just discovered the art of photography. The process was communicated to Morse, who, with Dr. Draper, fitted up a studio on the roof of the University, and took the first daguerreotypes in America.

The American Congress now seemed as indifferent to his inventions as the European governments. An exciting campaign for the presidency was at hand, and the proposed grant for the telegraph was forgotten. Mr. Smith had returned to the political arena, and the Vails were under a financial cloud, so that Morse could expect no further aid from them. The next two years were the darkest he had ever known. 'Porte Crayon' tells us that he had little patronage as a professor, and at one time only three pupils besides himself. Crayon's fee of fifty dollars for the second quarter were overdue, owing to his remittance from home not arriving; and one day the professor said, 'Well, Strother, my boy, how are we off for money?' Strother explained how he was situated, and stated that he hoped to have the money next week.

'Next week!' repeated Morse. 'I shall be dead by that time … dead of starvation.'

'Would ten dollars be of any service?' inquired the student, both astonished and distressed.

'Ten dollars would save my life,' replied Morse; and Strother paid the money, which was all he owned. They dined together, and afterwards the professor remarked, 'This is my first meal for twenty-four hours. Strother, don't be an artist. It means beggary. A house-dog lives better. The very sensitiveness that stimulates an artist to work keeps him alive to suffering.'

Towards the close of 1841 he wrote to Alfred Vail: 'I have not a cent in the world;' and to Mr. Smith about the same time he wrote: 'I find myself without sympathy or help from any who are associated with me, whose interests, one would think, would impell them at least to inquire if they could render some assistance. For nearly two years past I have devoted all my time and scanty means, living on a mere pittance, denying myself all pleasures, and even necessary food, that I might have a sum to put my telegraph into such a position before Congress as to insure success to the common enterprise. I am crushed for want of means, and means of so trifling a character too, that they who know how to ask (which I do not) could obtain in a few hours. … As it is, although everything is favourable, although I have no competition and no opposition—on the contrary, although every member of Congress, so far as I can learn, is favourable—yet I fear all will fail because I am too poor to risk the trifling expense which my journey and residence in Washington will occasion me. I will not run in debt, if I lose the whole matter. So unless I have the means from some source, I shall be compelled, however reluctantly, to leave it. No one call tell the days and months of anxiety and labour I have had in perfecting my telegraphic apparatus. For want of means I have been compelled to make with my own hands (and to labour for weeks) a piece of mechanism which could be made much better, and in a tenth part of the time, by a good mechanician, thus wasting time—time which I cannot recall, and which seems double-winged to me.

'"Hope deferred maketh the heart sick." It is true, and I have known the full meaning of it. Nothing but the consciousness that I have an invention which is to mark an era in human civilisation, and which is to contribute to the happiness of millions, would have sustained me through so many and such lengthened trials of patience in perfecting it.' Morse did not invent for money or scientific reputation; he believed himself the instrument of a great purpose.

During the summer of 1842 he insulated a wire two miles long with hempen threads saturated with pitch-tar and surrounded with india-rubber. On October 18, during bright moonlight, he submerged this wire in New York Harbour, between Castle Garden and Governor's Island, by unreeling it from a small boat rowed by a man. After signals had been sent through it, the wire was cut by an anchor, and a portion of it carried off by sailors. This appears to be the first experiment in signalling on a subaqueous wire. It was repeated on a canal at Washington the following December, and both are described in a letter to the Secretary of the Treasury, December 23, 1844, in which Morse states his belief that 'telegraphic communication on the electro-magnetic plan may with certainty be established across the Atlantic Ocean. Startling as this may now seem, I am confident the time will come when the project will be realised.'

In December, 1842, the inventor made another effort to obtain the help of Congress, and the Committee on Commerce again recommended an appropriation of 30,000 dollars in aid of the telegraph. Morse had come to be regarded as a tiresome 'crank' by some of the Congressmen, and they objected that if the magnetic telegraph were endowed, mesmerism or any other 'ism' might have a claim on the Treasury. The Bill passed the House by a slender majority of six votes, given orally, some of the representatives fearing that their support of the measure would alienate their constituents. Its fate in the Senate was even more dubious; and when it came up for consideration late one night before the adjournment, a senator, the Hon. Fernando Wood, went to Morse, who watched in the gallery, and said,'There is no use in your staying here. The Senate is not in sympathy with your project. I advise you to give it up, return home, and think no more about it.'

Morse retired to his rooms, and after paying his bill for board, including his breakfast the next morning, he found himself with only thirty-seven cents and a half in the world. Kneeling by his bed-side he opened his heart to God, leaving the issue in His hands, and then, comforted in spirit, fell asleep. While eating his breakfast next morning, Miss Annie G. Ellsworth, daughter of his friend the Hon. Henry L. Ellsworth, Commissioner of Patents, came up with a beaming countenance, and holding out her hand, said—

'Professor, I have come to congratulate you.'

'Congratulate me!' replied Morse; 'on what?'

'Why,' she exclaimed,' on the passage of your Bill by the Senate!'

It had been voted without debate at the very close of the session. Years afterwards Morse declared that this was the turning-point in the history of the telegraph. 'My personal funds,' he wrote,' were reduced to the fraction of a dollar; and had the passage of the Bill failed from any cause, there would have been little prospect of another attempt on my part to introduce to the world my new invention.'

Grateful to Miss Ellsworth for bringing the good news, he declared that when the Washington to Baltimore line was complete hers should be the first despatch.

The Government now paid him a salary of 2,500 dollars a month to superintend the laying of the underground line which he had decided upon. Professors Gale and Fisher became his assistants. Vail was put in charge, and Mr. Ezra Cornell, who founded the Cornell University on the site of the cotton mill where he had worked as a mechanic, and who had invented a machine for laying pipes, was chosen to supervise the running of the line. The conductor was a five-wire cable laid in pipes; but after several miles had been run from Baltimore to the house intended for the relay, the insulation broke down. Cornell, it is stated, injured his machine to furnish an excuse for the stoppage of the work. The leaders consulted in secret, for failure was staring them in the face. Some 23,000 dollars of the Government grant were spent, and Mr. Smith, who had lost his faith in the undertaking, claimed 4000 of the remaining 7000 dollars under his contract for laying the line. A bitter quarrel arose between him and Morse, which only ended in the grave. He opposed an additional grant from Government, and Morse, in his dejection, proposed to let the patent expire, and if the Government would use his apparatus and remunerate him, he would reward Alfred Vail, while Smith would be deprived of his portion. Happily, it was decided to abandon the subterranean line, and erect the conductor on poles above the ground. A start was made from the Capitol, Washington, on April 1, 1844, and the line was carried to the Mount Clare Depot, Baltimore, on May 23, 1843. Next morning Miss Ellsworth fulfilled her promise by inditing the first message. She chose the words, 'What hath God wrought?' and they were transmitted by Morse from the Capitol at 8.45 a.m., and received at Mount Clare by Alfred Vail.

This was the first message of a public character sent by the electric telegraph in the Western World, and it is preserved by the Connecticut Historical Society. The dots and dashes representing the words were not drawn with pen and ink, but embossed on the paper with a metal stylus. The machine itself was kept in the National Museum at Washington, and on removing it, in 1871, to exhibit it at the Morse Memorial Celebration at New York, a member of the Vail family discovered a folded paper attached to its base. A corner of the writing was torn away before its importance was recognised; but it proved to be a signed statement by Alfred Vail, to the effect that the method of embossing was invented by him in the sixth storey of the New York Observer office during 1844, prior to the erection of the Washington to Baltimore line, without any hint from Morse. 'I have not asserted publicly my right as first and sole inventor,' he says, 'because I wished to preserve the peaceful unity of the invention, and because I could not, according to my contract with Professor Morse, have got a patent for it.'

The powers of the telegraph having been demonstrated, enthusiasm took the place of apathy, and Morse, who had been neglected before, was in some danger of being over-praised. A political incident spread the fame of the telegraph far and wide. The Democratic Convention, sitting in Baltimore, nominated Mr. James K. Polk as candidate for the Presidency, and Mr. Silas Wright for the Vice-Presidency. Alfred Vail telegraphed the news to Morse in Washington, and he at once told Mr. Wright. The result was that a few minutes later the Convention was dumbfounded to receive a message from Wright declining to be nominated. They would not believe it, and appointed a committee to inquire into the matter; but the telegram was found to be genuine.

On April 1, 1845, the Baltimore to Washington line was formally opened for public business. The tariff adopted by the Postmaster-General was one cent for every four characters, and the receipts of the first four days were a single cent. At the end of a week they had risen to about a dollar.

Morse offered the invention to the Government for 100,000 dollars, but the Postmaster-General declined it on the plea that its working 'had not satisfied him that under any rate of postage that could be adopted its revenues could be made equal to its expenditures.' Thus through the narrow views and purblindness of its official the nation lost an excellent opportunity of keeping the telegraph system in its own hands. Morse was disappointed at this refusal, but it proved a blessing in disguise. He and his agent, the Hon. Amos Kendall, determined to rely on private enterprise.

A line between New York and Philadelphia was projected, and the apparatus was exhibited in Broadway at a charge of twenty-five cents a head. But the door-money did not pay the expenses. There was an air of poverty about the show. One of the exhibitors slept on a couple of chairs, and the princely founder of Cornell University was grateful to Providence for a shilling picked up on the side-walk, which enabled him to enjoy a hearty breakfast. Sleek men of capital, looking with suspicion on the meagre furniture and miserable apparatus, withheld their patronage; but humbler citizens invested their hard-won earnings, the Magnetic Telegraph Company was incorporated, and the line was built. The following year, 1846, another line was run from Philadelphia to Baltimore by Mr. Henry O'Reilly, of Rochester, N.Y., an acute pioneer of the telegraph. In the course of ten years the Atlantic States were covered by a straggling web of lines under the control of thirty or forty rival companies working different apparatus, such as that of Morse, Bain, House, and Hughes, but owing to various causes only one or two were paying a dividend. It was a fit moment for amalgamation, and this was accomplished in 1856 by Mr. Hiram Sibley. 'This Western Union,' says one in speaking of the united corporation, 'seems to me very like collecting all the paupers in the State and arranging them into a union so as to make rich men of them.' But 'Sibley's crazy scheme' proved the salvation of the competing companies. In 1857, after the first stage coach had crossed the plains to California, Mr. Henry O'Reilly proposed to build a line of telegraph, and Mr. Sibley urged the Western Union to undertake it. He encountered a strong opposition. The explorations of Fremont were still fresh in the public mind, and the country was regarded as a howling wilderness. It was objected that no poles could be obtained on the prairies, that the Indians or the buffaloes would destroy the line, and that the traffic would not pay. 'Well, gentlemen,' said Sibley, 'if you won't join hands with me in the thing, I'll go it alone.' He procured a subsidy from the Government, who realised the value of the line from a national point of view, the money was raised under the auspices of the Western Union, and the route by Omaha, Fort Laramie, and Salt Lake City to San Francisco was fixed upon. The work began on July 4, 1861, and though it was expected to occupy two years, it was completed in four months and eleven days. The traffic soon became lucrative, and the Indians, except in time of war, protected the line out of friendship for Mr. Sibley. A black-tailed buck, the gift of White Cloud, spent its last years in the park of his home at Rochester.

The success of the overland wire induced the Company to embark on a still greater scheme, the project of Mr. Perry MacDonough Collins, for a trunk line between America and Europe by way of British Columbia, Alaska, the Aleutian Islands, and Siberia. A line already existed between European Russia and Irkutsk, in Siberia, and it was to be extended to the mouth of the Amoor, where the American lines were to join it. Two cables, one across Behring Sea and another across the Bay of Anadyr, were to link the two continents.

The expedition started in the summer of 1865 with a fleet of about thirty vessels, carrying telegraph and other stores. In spite of severe hardships, a considerable part of the line had been erected when the successful completion of the trans-Atlantic cable, in 1866, caused the enterprise to be abandoned after an expenditure of 3,000,000 dollars. A trace cut for the line through the forests of British Columbia is still known as the 'telegraph trail.' In spite of this misfortune the Western Union Telegraph Company has continued to flourish. In 1883 its capital amounted to 80,000,000 dollars, and it now possesses a virtual monopoly of telegraphic communication in the United States.

Morse did not limit his connections to land telegraphy. In 1854, when Mr. Cyrus Field brought out the Atlantic Telegraph Company, to lay a cable between Europe and America, he became its electrician, and went to England for the purpose of consulting with the English engineers on the execution of the project. But his instrument was never used on the ocean lines, and, indeed, it was not adapted for them.

During this time Alfred Vail continued to improve the Morse apparatus, until it was past recognition. The porte-rule and type of the transmitter were discarded for a simple 'key' or rocking lever, worked up and down by the hand, so as to make and break the circuit. The clumsy framework of the receiver was reduced to a neat and portable size. The inking pen was replaced by a metal wheel or disc, smeared with ink, and rolling on the paper at every dot or dash. Vail, as we have seen, also invented the plan of embossing the message. But he did still more. When the recording instrument was introduced, it was found that the clerks persisted in 'reading' the signals by the clicking of the marking lever, and not from the paper. Threats of instant dismissal did not stop the practice when nobody was looking on. Morse, who regarded the record as the distinctive feature of his invention, was very hostile to the practice; but Nature was too many for him. The mode of interpreting by sound was the easier and more economical of the two; and Vail, with his mechanical instinct, adopted it. He produced an instrument in which there is no paper or marking device, and the message is simply sounded by the lever of the armature striking on its metal stops. At present the Morse recorder is rarely used in comparison with the 'sounder.'

The original telegraph of Morse, exhibited in 1837, has become an archaic form. Apart from the central idea of employing an electro-magnet to signal—an idea applied by Henry in 1832, when Morse had only thought of it—the development of the apparatus is mainly due to Vail. His working devices made it a success, and are in use to-day, while those of Morse are all extinct.

Morse has been highly honoured and rewarded, not only by his countrymen, but by the European powers. The Queen of Spain sent him a Cross of the Order of Isabella, the King of Prussia presented him with a jewelled snuff-box, the Sultan of Turkey decorated him with the Order of Glory, the Emperor of the French admitted him into the Legion of Honour. Moreover, the ten European powers in special congress awarded him 400,000 francs (some 80,000 dollars), as an expression of their gratitude: honorary banquets were a common thing to the man who had almost starved through his fidelity to an idea.

But beyond his emoluments as a partner in the invention, Alfred Vail had no recompense. Morse, perhaps, was somewhat jealous of acknowledging the services of his 'mechanical assistant,' as he at one time chose to regard Vail. When personal friends, knowing his services, urged Vail to insist upon their recognition, he replied, 'I am confident that Professor Morse will do me justice.' But even ten years after the death of Vail, on the occasion of a banquet given in his honour by the leading citizens of New York, Morse, alluding to his invention, said: 'In 1835, according to the concurrent testimony of many witnesses, it lisped its first accents, and automatically recorded them a few blocks only distant from the spot from which I now address you. It was a feeble child indeed, ungainly in its dress, stammering in its speech; but it had then all the distinctive features and characteristics of its present manhood. It found a friend, an efficient friend, in Mr. Alfred Vail, of New Jersey, who, with his father and brother, furnished the means to give the child a decent dress, preparatory to its' visit to the seat of Government.'

When we remember that even by this time Vail had entirely altered the system of signals, and introduced the dot-dash code, we cannot but regard this as a stinted acknowledgment of his colleague's work. But the man who conceives the central idea, and cherishes it, is apt to be niggardly in allowing merit to the assistant whose mechanical skill is able to shape and put it in practice; while, on the other hand, the assistant is sometimes inclined to attach more importance to the working out than it deserves. Alfred Vail cannot be charged with that, however, and it would have been the more graceful on the part of Morse had he avowed his indebtedness to Vail with a greater liberality. Nor would this have detracted from his own merit as the originator and preserver of the idea, without which the improvements of Vail would have had no existence. In the words of the Hon. Amos Kendall, a friend of both: 'If justice be done, the name of Alfred Vail will for ever stand associated with that of Samuel F. B. Morse in the history and introduction into public use of the electro-magnetic telegraph.'

Professor Morse spent his declining years at Locust Grove, a charming retreat on the banks of the River Hudson. In private life he was a fine example of the Christian gentleman.

In the summer of 1871, the Telegraphic Brotherhood of the World erected a statue to his honour in the Central Park, New York. Delegates from different parts of America were present at the unveiling; and in the evening there was a reception at the Academy of Music, where the first recording telegraph used on the Washington to Baltimore line was exhibited. The inventor himself appeared, and sent a message at a small table, which was flashed by the connected wires to the remotest parts of the Union, It ran: 'Greeting and thanks to the telegraph fraternity throughout the world. Glory to God in the highest, on earth peace, goodwill towards men.'

It was deemed fitting that Morse should unveil the statue of Benjamin Franklin, which had been erected in Printing House Square, New York. When his venerable figure appeared on the platform, and the long white hair was blown about his handsome face by the winter wind, a great cheer went up from the assembled multitude. But the day was bitterly cold, and the exposure cost him his life. Some months later, as he lay on his sick bed, he observed to the doctor, 'The best is yet to come.' In tapping his chest one day, the physician said,' This is the way we doctors telegraph, professor,' and Morse replied with a smile, 'Very good—very good.' These were his last words. He died at New York on April 2, 1872, at the age of eighty-one years, and was buried in the Greenwood Cemetery.

  1. The Telegraph in America, by James D. Reid
  2. American Journal of Science.