Page:A History of Mathematics (1893).djvu/242

This page has been proofread, but needs to be validated.
NEWTON TO EULER.
223

tion[39] to determine whether dx dy is the same as d(xy), and the same as . After considering these questions at the close of one of his manuscripts, he concluded that the expressions were not the same, though he could not give the true value for each. Ten days later, in a manuscript dated November 21, 1675, he found the equation , giving an expression for d(xy), which he observed to be true for all curves. He succeeded also in eliminating dx from a differential equation, so that it contained only dy, and thereby led to the solution of the problem under consideration. "Behold, a most elegant way by which the problems of the inverse methods of tangents are solved, or at least are reduced to quadratures!" Thus he saw clearly that the inverse problems of tangents could be solved by quadratures, or, in other words, by the integral calculus. In course of a half-year he discovered that the direct problem of tangents, too, yielded to the power of his new calculus, and that thereby a more general solution than that of Descartes could be obtained. He succeeded in solving all the special problems of this kind, which had been left unsolved by Descartes. Of these we mention only the celebrated problem proposed to Descartes by De Beaune, viz. to find the curve whose ordinate is to its sub-tangent as a given line is to that part of the ordinate which lies between the curve and a line drawn from the vertex of the curve at a given inclination to the axis.

Such was, in brief, the progress in the evolution of the new calculus made by Leibniz during his stay in Paris. Before his departure, in October, 1676, he found himself in possession of the most elementary rules and formulæ of the infinitesimal calculus.

From Paris, Leibniz returned to Hanover by way of London and Amsterdam. In London he met Collins, who showed him