Page:Chance, love, and logic - philosophical essays (IA chancelovelogicp00peir 0).pdf/252

This page needs to be proofread.

simply uses a rule of thumb in blindly drawing inferences like other inferences that have turned out well, he will, of course, be continually falling into error about infinite numbers. The truth is such people do not reason, at all. But for the few who do reason, reasoning about infinite numbers is easier than about finite numbers, because the complicated syllogism of transposed quantity is not called for. For example, that the whole is greater than its part is not an axiom, as that eminently bad reasoner, Euclid, made it to be. It is a theorem readily proved by means of a syllogism of transposed quantity, but not otherwise. Of finite collections it is true, of infinite collections false. Thus, a part of the whole numbers are even numbers. Yet the even numbers are no fewer than all the numbers; an evident proposition since if every number in the whole series of whole numbers be doubled, the result will be the series of even numbers.

1, 2, 3, 4, 5, 6, etc.
2, 4, 6, 8, 10, 12, etc.

So for every number there is a distinct even number. In fact, there are as many distinct doubles of numbers as there are of distinct numbers. But the doubles of numbers are all even numbers.

In truth, of infinite collections there are but two grades of magnitude, the endless and the innumerable. Just as a finite collection is distinguished from an infinite one by the applicability to it of a special mode of reasoning, the syllogism of transposed quantity, so, as I showed in the paper last referred to, a numerable collection is distinguished from an innumerable one by the applicability to it of a certain