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mode of reasoning, the Fermatian inference, or, as it is
sometimes improperly termed, "mathematical induction."

As an example of this reasoning, Euler's demonstration
of the binomial theorem for integral powers may be given.
The theorem is that (x + y)^n, where n is a whole number,
may be expanded into the sum of a series of terms of which
the first is x^{n}y^o and each of the others is derived from the
next preceding by diminishing the exponent of x by 1 and
multiplying by that exponent and at the same time increasing
the exponent of y by 1 and dividing by that increased
exponent. Now, suppose this proposition to be true for a
certain exponent, n = M, then it must also be true for
n = M + 1. For let one of the terms in the expansion of
(x + y)^M be written Axpyq{\displaystyle \mathrm {A} x^{p}y^{q}}[image: {\displaystyle \mathrm {A} x^{p}y^{q}}]. Then, this term with the two
following will be

Axpyq+Apq+1xp−1yq+1+Apq+1p−1q+2xp−2yq+2{\displaystyle \mathrm {A} {x^{p}}{y^{q}}+\mathrm {A} {\frac {p}{q+1}}x^{p-1}y^{q+1}+\mathrm {A} {\frac {p}{q+1}}{\frac {p-1}{q+2}}x^{p-2}y^{q+2}}[image: {\displaystyle \mathrm {A} {x^{p}}{y^{q}}+\mathrm {A} {\frac {p}{q+1}}x^{p-1}y^{q+1}+\mathrm {A} {\frac {p}{q+1}}{\frac {p-1}{q+2}}x^{p-2}y^{q+2}}]

Now, when (x + y)^M is multiplied by x + y to give (x + y)^{M + 1},
we multiply first by x and then by y instead of by x and add
the two results. When we multiply by x, the second of the
above three terms will be the only one giving a term involving
xpyq+1{\displaystyle x^{p}y^{q+1}}[image: {\displaystyle x^{p}y^{q+1}}] and the third will be the only one giving a term in
x^{p - 1}y^{q + 2}; and when we multiply by y the first will be the only
term giving a term in xpyq+1{\displaystyle x^{p}y^{q+1}}[image: {\displaystyle x^{p}y^{q+1}}], and the second will be the only
term giving a term in x^{p - 1}y^{q + 2}. Hence, adding like terms, we
find that the coefficient of xpyq+1{\displaystyle {x^{p}}{y^{q+1}}}[image: {\displaystyle {x^{p}}{y^{q+1}}}] in the expansion of (x + y)^{M + 1}
will be the sum of the coefficients of the first two of the above
three terms, and that the coefficient of x^{p - 1}y^{q + 2} will be the
sum of the coefficients of the last two terms. Hence, two
successive terms in the expansion of (x + y)^{M + 1} will be
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