This page has been proofread, but needs to be validated.
TRANSMUTATIONS OF ENERGY.
125

we know (Art. l04) that when a circuit is moved into the presence of another circuit conveying a current, there is produced by induction a current in the opposite direction; and hence we perceive that, when two similar currents approach each other, each is diminished by means of this inductive influence—in fact, a certain amount of current energy disappears from existence in order that an equivalent amount of the energy of visible motion may be produced.

174 Electricity in motion is transmuted into heat during the passage of a current along a thin wire, or any badly conducting substance—the wire is heated in consequence, and may even become white hot. Most frequently the energy of an electric current is spent in heating the wires and other materials that form the circuit. Now, the energy of such a current is fed by the burning or oxidation of the metal (generally zinc) which is used in the circuit, so that the ultimate effect of this combustion is the heating of the various wires and other materials through which the current passes.

175. We may, in truth, burn or oxidize zinc in two ways—we may oxidize it, as we have just seen, in the voltaic battery, and we shall find that by the combustion of a kilogramme of zinc a definite amount of heat is produced. Or we may oxidize our zinc by dissolving it in acid in a single vessel, when, without going through the intermediate process of a current, we shall get just as much heat out of a kilogramme of zinc as we did in the