This page has been proofread, but needs to be validated.
126
THE CONSERVATION OF ENERGY.

former case. In fact, whether we oxidize our zinc by the battery, or in the ordinary way, the quantity of heat produced will always bear the same relation to the quantity of zinc consumed; the only difference being that, in the ordinary way of oxidizing zinc, the heat is generated in the vessel containing the zinc and acid, while in the battery it may make its appearance a thousand miles away, if we have a sufficiently long wire to convey our current.

176. This is, perhaps, the right place for alluding to a discovery of Peltier, that a current of positive electricity passing across a junction of bismuth and antimony in the direction from the bismuth to the antimony appears to produce cold.


Fig. 14.
To understand the significance of this fact we must consider it in connection with the thermo-electric current, which we have seen, from Art. 161, is established in a circuit of bismuth and antimony, of which one junction is hotter than the other. Suppose we have a circuit of this kind with both its junctions at the temperature of 100° C. to begin with. Suppose, next, that while we protect one junction, we expose the other to the open air—it will, of course, lose heat, so that the protected junction will now be hotter than the other. The consequence will be (Art. 161) that a current of positive electricity will pass along the protected junction from the bismuth to the antimony.