This page has been proofread, but needs to be validated.
BACTERIOLOGY
161

forms—the zoogloea is now known to be a sort of resting condition of the Schizomycetes, the various elements being glued together, as it were, by their enormously swollen and diffluent cell-walls becoming contiguous. The zoogloea is formed by active division of single or of several mother-cells, and the progeny appear to go on secreting the cell-wall substance, which then absorbs many times its volume of water, and remains as a consistent matrix, in which the cells come to rest. The matrix—i.e. the swollen cell-walls—in some cases consists mainly of cellulose, in others chiefly of a proteid substance; the matrix in some cases is horny and resistant, in others more like a thick solution of gum. It is intelligible from the mode of formation that foreign bodies may become entangled in the gelatinous matrix, and compound zoogloeae may arise by the apposition of several distinct forms, a common event in macerating troughs (fig. 3, A). Characteristic forms may be assumed by the young zoogloea of different species,—spherical, ovoid, reticular, filamentous, fruiticose, lamellar, &c.,—but these vary considerably as the mass increases or comes in contact with others. Older zoogloeae may precipitate oxide of iron in the matrix, if that metal exists in small quantities in the medium. Under favourable conditions the elements in the zoogloea again become active, and move out of the matrix, distribute themselves in the surrounding medium, to grow and multiply as before. If the zoogloea is formed on a solid substratum it may become firm and horny; immersion in water softens it as described above.

Fig.8.—Curve of growth of a filament of Bacillus ramosus (Fraenkel), constructed
from data such as in fig. 4. The abscissae represent intervals of time, the ordinates
the measured lengths of the growing filament. Thus, at 2.33 p.m. the length of the
filament was 6 µ; at 5.45, 20 µ; at 8 p.m., 70 µ and so on. Such curves show
differences of steepness according to the temperature (see temp. curve), and to
alterations of light (lamp) and darkness.  (H. M. W.) 

The growth of an ordinary bacterium consists in uniform elongation of the rodlet until its length is doubled, followed by division by a median septum, then by the simultaneous doubling in length of each daughter cell, Measure-
ment of growth.
again followed by the median division, and so on (figs. 13, 14). If the cells remain connected the resulting filament repeats these processes of elongation and subsequent division uniformly so long as the conditions are maintained, and very accurate measurements have been obtained on such a form, e.g. B. ramosus. If a rodlet in a hanging drop of nutrient gelatine is fixed under the microscope and kept at constant temperature, a curve of growth can be obtained recording the behaviour during many hours or days. The measured lengths are marked off on ordinates erected on an abscissa, along which the times are noted. The curve obtained on joining the former points then brings out a number of facts, foremost among which are (1) that as long as the conditions remain constant the doubling periods—i.e. the times taken by any portion of the filament to double its length—are constant, because each cell is equally active along the whole length; (2) there are optimum, minimum and maximum temperatures, other conditions remaining constant, at which growth begins, runs at its best and is soon exhausted, respectively; (3) that the most rapid cell-division and maximum growth do not necessarily accord with the best conditions for the life of the organism; and (4) that any sudden alteration of temperature brings about a check, though a slow rise may accelerate growth (fig. 8). It was also shown that exposure to light, dilution or exhaustion of the food-media, the presence of traces of poisons or metabolic products check growth or even bring it to a standstill; and the death or injury of any single cell in the filamentous series shows its effect on the curve by lengthening the doubling period, because its potential progeny have been put out of play. Hardy has shown that such a destruction of part of the filament may be effected by the attacks of another organism.

A very characteristic method of reproduction is that of spore-formation, and these minute reproductive bodies, which represent a resting stage of the organism, are now known in many forms. Formerly two kinds of spores Spores.were described, arthrospores and endospores. An arthrospore, however, is not a true spore but merely an ordinary vegetative cell which separates and passes into a condition of rest, and such may occur in forms which form endospores, e.g. B. subtilis, as well as in species not known to form endospores. The true spore or endospore begins with the appearance of a minute granule in the protoplasm of a vegetative cell; this granule enlarges and in a few hours has taken to itself all the protoplasm, secreted a thin but very resistive envelope, and is a ripe ovoid spore, smaller than the mother-cell and lying loosely in it (cf. figs. 6, 9, 10, and 11). In the case of the simplest and most minute Schizomycetes