Open main menu
This page has been proofread, but needs to be validated.
162
BACTERIOLOGY

(Micrococcus, &c.) no definite spores have been discovered; any one of the vegetative micrococci may commence a new series of cell by growth and division. We may call these forms “asporous,” at any rate provisionally.

Bacteriology 9.png
Fig. 9.
A. Bacillus anthracis. (After de
Bary.) Two of the long filaments
(B, fig. 10) in which spores are
being developed. The specimen
was cultivated in broth, and
spores are drawn a little too
small—they should be of the
same diameter transversely as
the segments.
B. Bacillus subtilis. (After de
Bary.) 1, fragments of filaments
with ripe spores; 2-5,
successive stages in the
germination of the spores, the
remains of the spore attached
to the germinal rodlets.

The spore may be formed in short or long segments, the cell-wall of which may undergo change of form to accommodate itself to the contents. As a rule only one spore is formed in a cell, and the process usually takes place in a bacillar segment. In some cases the spore-forming protoplasm gives a blue reaction with iodine solutions. The spores may be developed in cells which are actively swarming, the movements not being interfered with by the process (fig. 4, D). The so-called “Köpfchenbacterien” of older writers are simply bacterioid segments with a spore at one end, the mother cell-wall having adapted itself to the outline of the spore (fig. 4, F). The ripe spores of Schizomycetes are spherical, ovoid or long-ovoid in shape and extremely minute (e.g. those of Bacillus subtilis measure 0.0012 mm. long by 0.0006 mm. broad according to Zopf), highly refractive and colourless (or very dark, probably owing to the high index of refraction and minute size). The membrane may be relatively thick, and even exhibit shells or strata.

The germination of the spores has now been observed in several forms with care. The spores are capable of germination at once, or they may be kept for months and even years, and are very resistant against desiccation, heat and cold, &c. In a suitable medium and at a proper temperature the germination is completed in a few hours. The spore swells and elongates and the contents grow forth to a cell like that which produced it, in some cases clearly breaking through the membrane, the remains of which may be seen attached to the young germinal rodlet (figs. 5, 9 and 11); in other cases the surrounding membrane of the spore swells and dissolves. The germinal cell then grows forth into the forms typical for the particular Schizomycete concerned.

The conditions for spore-formation differ. Anaerobic species usually require little oxygen, but aerobic species a free supply. Each species has an optimum temperature and many are known to require very special food-media. The systematic interference with these conditions has enabled bacteriologists to induce the development of so-called asporogenous races, in which the formation of spores is indefinitely postponed, changes in vigour, virulence and other properties being also involved, in some cases at any rate. The addition of minute traces of acids, poisons, &c., leads to this change in some forms; high temperature has also been used successfully.

Bacteriology 10.png
Fig. 10.—Bacillus subtilis. (After Strasburger.) A. Zoogloea pellicle. B. Motile
rodlets. C. Development of spores.
Bacteriology 11.png
Fig. 11.—Stages in the development of spores of Bacillus ramosus (Fraenkel), in the
order and at the times given, in a hanging drop culture, under a very high power. The
process begins with the formation of brilliant granules (A, B); these increase, and the
brilliant substance gradually balls together (C) and forms the spores (D), one in each
segment, which soon acquire a membrane and ripen (E).  (H. M. W.) 

The difficult subject of the classification[1] of bacteria dates from the year 1872, when Cohn published his system, which was extended in 1875; this scheme has in fact dominated the study of bacteria ever since. Zopf in 1885 proposed a scheme based on the acceptance of Classifica-
tion.
extreme views of pleomorphism; his system, however, was extraordinarily impracticable and was recognized by him as provisional only. Systems have also been brought forward based on the formation of arthrospores and endospores, but as explained above this is eminently unsatisfactory, as arthrospores are not true spores and both kinds of reproductive bodies are found in one and the same form. Numerous attempts have been made to construct schemes of classification based on the power of growing colonies to liquefy gelatine, to secrete coloured pigments, to ferment certain media with evolution of carbon dioxide or other gases, or to induce pathological conditions in animals. None of these systems, which are chiefly due to the medical bacteriologists, has maintained its position, owing to the difficulty of applying the characters and to the fact that such properties are physiological and liable to great fluctuations in culture, because a given organism may vary greatly in such respects according to its degree of vitality at the time, its age, the mode of nutrition

  1. The difficulties presented by such minute and simple organisms as the Schizomycetes are due partly to the few “characters” which they possess and partly to the dangers of error in manipulating them; it is anything but an easy matter either to trace the whole development of a single form or to recognize with certainty any one stage in the development unless the others are known. This being the case, and having regard to the minuteness and ubiquity of these organisms, we should be very careful in accepting evidence as to the continuity or otherwise of any two forms which falls short of direct and uninterrupted observation. The outcome of all these considerations is that, while recognizing that the “genera” and “species” as defined by Cohn must be recast, we are not warranted in uniting any forms the continuity of which has not been directly observed; or, at any rate, the strictest rules should be followed in accepting the evidence adduced to render the union of any forms probable.