This page has been proofread, but needs to be validated.
618
COCCULUS INDICUS—COCHABAMBA


each with 12 sporozoites. C. mesnilii, unique species, from the spermatogonial (testis) cells of Polymnia (a Polychaete). An interesting point in the schizogony is the formation of schizontocytes (see above).

A Coccidian parasitic in the kidneys of the mouse has been described by Smith and Johnson (1902) and named by them Klossiella, on the ground that it possessed many spores, each with about 20 sporozoites. Woodcock has shown, however, that the authors were in all probability dealing with a similar modification of schizogony to that which obtains in Caryotropha. The sporogony of this form (and hence its systematic position) remains at present, therefore, quite unknown.

There are several doubtful or insufficiently known genera, e.g. Bananella, Goussia, Hyaloklossia, Gonobia, Pfeifferella and Rhabdospora, many of which probably represent only schizogonous generations of other forms. (For information concerning these see Labbé, 1897.)

Lastly it remains to mention the extremely interesting forms parasitic in Cephalopods. For some years these have provided a fruitful source of discussion to systematists. Here it may be stated simply that their systematic position and nomenclature were thought to have been finally settled by the researches of Jacquemet (1903) and Lühe (1902) in the following terms:—

Genus Eucoccidium. Lühe (syn. Légerina Jacq.), Coccidia possessing polysporous oocysts and lacking schizogony, parasitic in Cephalopods. Two well-known species: E. eberthi (Labbé), (=Benedenia seu Klossia e. seu octopiana), parasitic in Sepia, which is tri- or tetra-zoic; and E. octopianum (Schn.), (syn. Benedenia seu Klossia o.) from Octopus, which is polyzoic, having 10 to 12 sporozoites. In both forms cysts containing megaspores and megasporozoites, and others containing microspores and microsporozoites are found, considered as representing sexual differentiation thrown back to the very earliest stages of the life-cycle.

Quite recently much additional light has been thrown upon our knowledge of these parasites, including a new one, E. jacquemeti. Moroff (1906) has shown that not one but many megagametes are formed, and fertilized by the microgametes. For this reason he regards them as Gregarines rather than Coccidia. Further, Léger and Duboscq (1906) have found that the characteristic coelomic parasites (Aggregata) of Crustacea, generally regarded as gymnosporous Gregarines (i.e. Gregarines in which the sporozoites are naked) constitute in reality nothing more or less than a schizogonous generation of these Cephalopodan parasites, which have thus an alternation of true hosts. The ripe sporocysts from the Cephalopod are eaten by a particular crab (e.g. Portunus or Inachus, according to the parasite), the sporozoites are liberated and traverse the mucous membrane of the intestine, coming to rest in the surrounding lymphatic layer. Here a large “cyst” is formed, projecting into the body-cavity, the contents of which give rise to a great number of merozoites. On the crab being devoured by the right species of Cephalopod, the merozoites doubtless give rise to the sexual generation again.

As the name Aggregata is much the older, and as, moreover, there is no longer any reason to retain that of Eucoccidium, these parasites must in future receive the former generic appellation. With regard to the various specific names, however, they remain quite unsettled until the life-history is properly worked out in different cases (see also Gregarines).

It seems to the writer a much more open question than Moroff and Léger and Duboscq apparently suppose, whether these parasites are to be relegated to the Gregarines. For undoubtedly they have many Coccidian features, and on the other hand they differ in many ways from Gregarines. The chief feature of agreement with the latter order is the possession of many female gametes. As already said, there can be little doubt that this was the condition in the Coccidian ancestor, and it is by no means impossible that one or two forms existing at the present day remain primitive in that respect. On the other hand, the advanced character of the parasitism (the parasites remaining intracellular up to and including gamete-formation); the entire lack of the characteristic feature of association; the schizogony, which is only a very rare occurrence in Gregarines, and which, in the present case, strongly suggests the process in Caryotropha and Klossiella; and, last but not least, the varying number of the sporozoites (3 in one form, 10–15 in others), which is very different from the almost constant number (8) in Gregarines, are all characters in which these forms agree with Coccidia and not with Gregarines. Having regard to these points, the writer is inclined, for the present, to consider Aggregata as an offshoot rather from the Coccidian than from the Gregarine branch of the Ectosporan tree.

Bibliography.—The following are some of the important papers dealing with the order:—G. Bonnet-Eymard, “Sur l’Évolution de l’Eimeria nova, Schneider,” C.R. Soc. Biol. 52, p. 659, 1900; L. Brasil, “Sur une Coccidie nouvelle, &c.,” C.R.Ac. Sci. 139, p. 645, 1904; L. Cuénot, “Légerella testiculi n. sp., &c.,” Arch. Zool. exp. (N. et R.), (3) 10, p. 49, 6 figs., 1902; M. Jacquemet, “Sur la systématique des Coccidies des Céphalopodes,” Arch. Protistenk. 2 p., 190, 1903; A. Labbé, “Recherches zoologiques, cytologiques et biologiques sur les Coccidies,” Arch. zool. exp. (3), 4, p. 517, 3 pls., 1897; A. Laveran, “Sur les modes de réproduction d’Isospora lacazei,” C.R. Soc. Biol. 50, p. 1139, 1898; A. Laveran and F. Mesnil, “Sur deux Coccidies intestinales de la Rana esculenta,” op. cit. 54, p. 857, 9 figs., 1902; A. Laveran and F. Mesnil, “Sur la Coccidie trouvée dans le rein de la Rana esculenta, &c.,” C.R.Ac. Sci. 135, p. 82, 10 figs., 1902; A. Laveran and F. Mesnil, “Sur quelques Protozoaires parasites d’une tortue, &c.” t. c. p. 609, 14 figs., 1902; L. Léger, “Sur une nouvelle Coccidie à microgamètes ciliés,” op. cit., 127, p. 418, 1898; L. Léger, “Sur la morphologie et le développement des microgamètes des Coccidies,” Arch. zool. exp. (N. et R.) (3), 6, 1898; L. Léger, “Essai sur la classification des Coccidies, &c.,” Ann. Mus. Nat. Hist., Marseille (2), Bull. i. p. 71, 4 pls., 1898; L. Léger “Sur la présence d’une Coccidie coelomique chez Olocrates, &c.,” Arch. zool. exp. (N. et R.) (3), 8, p. i., 1900; L. Léger, “Sur le genre Eimeria et la classification des Coccidies,” C.R. Soc. Biol. 52, p. 575, 1900; L. Léger and O. Duboscq, “Recherches sur les Myriapodes de Corse et leurs parasites,” Arch. zool. exp. (4), 1, p. 307, 24 figs., 1903; L. Léger and O. Duboscq, “Sur l’évolution des Grégarines gymnosporées des Crustacés,” C.R.Ac. Sci. 142, p. 1225, 1906; L. Léger and O. Duboscq, “L’Évolution d’une Aggregata de la seiche chez le Portunus depurator,” C.R. Soc. Biol. 60, p. 1001, 1906; M. Lühe, “Über Geltung und Bedeutung der Gattungsnamen Eimeria und Coccidium,” C. B. Bakter (1) 31 Orig, p. 771, 1902; C. B. Bakter, “Die Coccidien-Literatur der letzten vier Jahre,” Zool. Centrlbl. 10, 45 pp., 1903; F. Mesnil, “Sur la conservation du nom générique Eimeria, &c.,” C.R. Soc. Biol. 52, p. 603, 1900; F. Mesnil, “Les Travaux récents sur les Coccidies,” Bull. Inst. Pasteur, i. pp. 473, 505, 1903; R. Metzner, “Untersuchungen an Coccidium cuniculi,” Arch. Protistenk. 2, p. 13, pl. ii. 1903; G. Moussu and G. Marotel, “La Coccidiose du mouton et son parasite,” Arch. Parasitol. 6, p. 82, 10 figs., 1902; T. Moroff, “Sur l’évolution des prétendues Coccidies des Céphalopodes,” C.R.Ac. Sci. 142, p. 652, 1906; C. Perez, “Le Cycle évolutif de l’Adelea mesnili, &c.,” Arch. Protistenk. 2, p. 1, pl. 1, 1903; F. Schaudinn, “Untersuchungen über den Generationswechsel bei Coccidien,” Zool. Jahrbücher (Anat.) 13, p. 197, 4 pls., 1900; F. Schaudinn, “Studien über krankheitserregende Protozoen—I. Cyclospora caryolytica, &c.,” Arb. kais. Gesundh.-amte, 18, p. 378, 2 pls., 1902; M. Siedlecki, “Réproduction sexuée . . . chez . . . Coccidium proprium,” C.R. Soc. Biol. 50, p. 664, figs., 1898; M. Siedlecki, “Étude cytologique ... de la Coccidie de la seiche, &c.,” Ann. Inst. Pasteur, 12, p. 799, 3 pls., 1898; M. Siedlecki, “Étude cytologique ... de Adelea ovata,” op. cit. 13, p. 169, 3 pls., 1899; M. Siedlecki, “Cycle évolutif de la Caryotropha mesnilii, &c.,” Bull. Ac. Cracovie, p. 561, 5 figs., 1902; T. Smith and H. P. Johnson, “On a Coccidian (Klossiella muris, gen. et spec. nov.), &c.,” J. exp. Med. 6, p. 303, 3 pls., 1902; H. M. Woodcock, “Notes on Sporozoa, I. On Klossiella muris, &c.,” Q.J. micr. Sci. 48, p. 153, 2 figs., 1904.  (H. M. Wo.) 

COCCULUS INDICUS, the commercial name for the dried fruits of Anamirta Cocculus (natural order Menispermaceae), a large climbing shrub, native to India. It contains a bitter poisonous principle, picrotoxin, used in small doses to control the night sweats of phthisis. It was formerly known as Levant nut and Levant shell, owing to the fact that it was brought to Europe by way of the Levant.

COCHABAMBA, a central department of Bolivia, occupying the eastern angle of the great Bolivian plateau, bounded N. by the department of El Beni, E. by Santa Cruz, S. by Chuquisaca and Potosi, and W. by Potosi, Oruro and La Paz. Area, 23,328 sq. m.; pop. (1900) 328,163. Its average elevation is between 8000 and 10,000 ft., and its mean temperature ranges from 50° to 60° F., making it one of the best climatic regions in South America. The rainfall is moderate and the seasons are not strongly marked, the difference being indicated by rainfall rather than by temperature. The rainy season is from November to February. Cochabamba is essentially an agricultural department, although its mineral resources are good and include deposits of gold, silver and copper. Its temperate climate favours the production of wheat, Indian corn, barley and potatoes, and most of the fruits and vegetables of the temperate zone. Coca, cacáo, tobacco and most of the fruits and vegetables of the tropics are also produced. Its forest products include rubber and cinchona. Lack of transportation facilities, however, have been an insuperable obstacle to the development of any industry beyond local needs except those of cinchona and rubber. Sheep and cattle thrive in this region, and an experiment with silkworms gave highly successful results. The population is chiefly of the Indian and mestizo types, education is in a backward state, and there are no manufactures other than those of the domestic stage, the natives making many articles of wearing apparel and daily use in their own homes. Rough highways and