Open main menu
This page has been proofread, but needs to be validated.

stones, and to insist that all shall pass through a ring 7/8 of an inch in diameter.

The water, like all the other constituents of concrete, should be clean and free from vegetable matter. At one time sea-water was thought to be injurious, but modern investigation finds no objection to it except on the score of appearance, efflorescence being more likely to occur when it is used.

Sometimes in massive concrete structures large and heavy stones as big as a man can lift are buried in the concrete after it is laid in position but while it is still wet. The stones should be hard and clean, and care must be taken that they are completely surrounded. Such concrete is known as rubble concrete.

In proportioning the quantities of matrix to aggregate the ideal to be aimed at is to get a concrete in which the voids or air-spaces shall be as small as possible; and as the lime or cement is usually by far the most expensive item, it is desirable Proportions. to use as little of it as is consistent with strength. When natural flint gravel containing both stones and sand is used, it is usual to mix so much gravel with so much lime or cement. The proportions in practice generally run from 3 to 1 for very strong work, down to 12 to 1 for unimportant work. Some engineers have the sand separated from the stones by screens or sieves and then remixed in definite proportions. When stones and sand are obtained from different sources, their relative proportions have to be decided upon. A common way of doing this is first to choose a proportion of sand to cement, which will probably vary from 1 to 1 up to 4 to 1. It then remains to determine what proportion of stones should be added. For this purpose a large can, whose volume is known, is filled loosely with stones, and the volume of the voids between them is determined by measuring how much water the can will hold in addition to the stones. It is then assumed that the quantity of sand and cement should be equal to the voids. Moreover, the volume of sand and cement together is generally assumed to be equal to that of the sand alone, as the cement to a large extent fills up voids in the sand. For example, suppose it is resolved to use 2 parts of sand to 1 of cement, and suppose that experiment shows that in a pailful of stones two-fifths of the volume consists of voids, then 2 parts of sand (or sand with cement) will fill voids in 5 parts of stones, and the proportion of cement, sand, stones becomes 1:2:5. There are several weak points in this reasoning, and a more accurate way of determining the best proportions is to try different mixtures of cement, stones and sand, filling them into different pails of the same size, and then ascertaining, by weighing the pails, which mixture is the densest.

In determining the amount of water to be added, several things must be considered. The amount required to combine chemically with the cement is about 16% by weight, but in practice much more than this is used, because of loss by evaporation, and the difficulty of ensuring that the water shall be uniformly distributed. If the situation is cool, the stone hard, and the concrete carefully rammed directly it is laid down and kept moist with damp cloths, only just sufficient to moisten the whole mass is required. On the other hand, water should be given generously in hot weather, also when absorbent stone is used or when the concrete is not rammed. In these cases the concrete should be allowed to take all it can, but an excess of water which would flow away, carrying the cement with it, should be avoided.

The thorough mixing of the constituents is a most important item in the production of good concrete. Its object is to distribute all the materials evenly throughout the mass, and it is performed in many different ways, both by Mixing. hand and by machine. The relative values of hand and machine work are often discussed. Roughly it may be said that where a large mass of concrete is to be mixed at one or two places a good machine will be of great advantage. On the other hand, where the mixing platform has to be constantly shifted, hand mixing is the more convenient way. In hand mixing it is usual to measure out from gauge boxes the sand, stones and cement or lime in a heap on a wooden platform. Then they are turned once or twice in their dry state by men with shovels. Next water is carefully added, and the mixture again turned, when it is ready for depositing. For important work and especially for thin structures the number of turnings should be increased. Many types of mixing machines are obtainable; the favourite type is one in which the materials are placed in a large iron box which is made to rotate, thus tumbling the matrix and aggregate over each other again and again. Another simple apparatus is a large vertical pipe or shoot in which sloping baffle plates or shelves are placed at intervals. The materials are fed in at the top of the shoot and fall from shelf to shelf, the mixing being effected by the various shocks thus given. When mixed the concrete is carried at once to the position required, and if the matrix is quick-setting Portland cement this operation must not be delayed.

One of the few drawbacks of concrete is that, unlike brickwork or masonry, it has nearly always to be deposited within moulds or framing which give it the required shape, and which are removed after it is set. Indeed, the trouble Moulds. and expense of these moulds sometimes prohibit its use. It is essential that they shall be strong and stiff, so as not to yield at all from the pressure of the wet concrete. The moulds for the face of a wall consist generally of wooden shutters, leaning against upright timbers which are secured by horizontal or raking struts to firm ground, or to anything that will bear the weight. If a smooth and neat face is wanted other precautions must be taken. The shutters must be planed, and coated with a mixture of soap and oil, so as to come away easily after the concrete is set. Moreover, when depositing the concrete, a shovel or other tool must be worked between the wet concrete and the shutter. This draws sand and water to the face and prevents the rough stones from showing themselves. Sometimes rough concrete is rendered over with a plaster of cement and sand after the shutters have been removed, but this is liable to peel off and should be avoided.

The method of depositing depends on the situation. If for important walls, or for small scantlings such as steel concrete generally involves, the concrete should be deposited in quite small quantities and very carefully rammed Depositing. into position. If for massive walls, it is usual to tip it out in large quantities from a barrow or wagon, and simply spread it in layers about a foot thick. Depositing concrete under water for breakwaters and bridge foundations requires special skill and special appliances. It is usually done in one of three ways:—(a) By moulding the concrete ashore into large blocks, which, when sufficiently hard, are lowered through the water into position by a crane or similar machine with the aid of divers. The most notable instance of this type of construction was at the port of Dublin, where Mr B. B. Stoney made blocks no less than 350 tons in weight. Each block formed a piece of the quay wall 12 ft. long and 27 ft. high, being made on shore and then deposited in position by floating sheers of special design. (b) By moulding the concrete into what are called “bag-blocks.” In this system the concrete is filled into bags, which are at once lowered through the water like the blocks. But in this case the concrete being still wet can adapt itself more or less to the shape of the adjoining bags, and strong rough walls can be built in this way. Sometimes the bags are made of enormous size, as at Aberdeen breakwater, where the contents of each bag weighed 50 tons. The canvas was laid in a hopper barge and there filled with the concrete and sewn up. The enormous bag was then dropped through a door in the bottom of the barge upon the breakwater foundation. (c) By depositing the wet concrete through the water between temporary upright timber frames which form the two faces of the wall. In this case very great care has to be taken to prevent the cement from being washed away from the other constituents when passing through the water. Indeed, this is bound to happen more or less, but it is guarded against by lowering the concrete slowly in a special box, the bottom of which is opened as it reaches the ground on which the concrete is to be laid. This method can only be carried out in still water, and where strong and tight framing can be built which will prevent the concrete from escaping. For small work the box can be replaced by a