This page has been proofread, but needs to be validated.
690  
FORTIFICATION AND SIEGECRAFT
[HISTORY


Two leading ideas are due to him. The first is that of the “independence of parapets.” A glance at any of the plans that have already been shown will show that hitherto the crests of parapets had always been traced parallel to the escarp or magistral line. Choumara pointed out that, while it was necessary for the escarp to be traced in straight lines with reference to the flanking arrangements, there was no such necessity as regards the parapets. By making the crest of the parapet quite independent of the escarp line he obtained great freedom of direction for his fire. The second idea is that of the “inner glacis.” This was a glacis parapet placed in the main ditch to shield the escarp; its effect being to prevent the escarp of the body of the place from being breached in the usual way by batteries crowning the crest of the covered way.

The need for Choumara’s improvements has passed by, but he was in his time a real teacher. One sentence of his strikes a resounding note: “What is chiefly required in fortification is simplicity and strength. It is not on a few little contrivances carefully hidden that one can rely for a good defence. The fate of a place should not depend on the intelligence of a corporal shut up in a small post prepared for his detachment.

Fig. 29.—Sedan in 1705.

Before leaving the bastioned system it will be of interest to study a couple of actual and complete examples, one irregular and one regular. Fig. 29 shows the defences of Sedan as they were at the end of the 17th century. One sees the touch of Vauban here and there, but the work is for the most part apparently early 17th century. It will be observed that on the river side of the town the defence consists of very irregular bastions with duplicated wet ditches (see the Dutch style, below); and on the other side, where water is not available, strength is sought for by pushing a succession of hornworks far out.

Fig. 30 is Saarlouis, constructed by Vauban in 1680 in his early manner, a remarkable example of symmetry. Vauban of course never thought of aiming at symmetry, which is of itself neither good nor bad, but it is interesting to note such a perfect example of the system.

It must here be remarked that the reproach of “geometrical” fortification is in no way applicable to the works of Vauban and his immediate successors. The true geometric fortification, which worshipped symmetry as a fetish, marked, as has been already pointed out, the decadence of the Italian school. Vauban and his fellows excelled in adapting works to sites, the real test of the engineer.

The bastioned system was the 17th-century solution of the fortification problem. Given an artillery and musketry of short range and too slow for effective frontal defence, a ditch is necessary as an obstacle. What is the best means of flanking the ditch and of protecting the flanking arrangements? If Vauban elected for the bastion, we must before criticizing his choice remember that he was the most experienced engineer of his day, a man of the first ability and quite without prejudice. What is matter for regret is that the authority of Vauban should have practically paralysed the French school during the 18th and most of the 19th century, so that while the conditions of attack and defence were gradually altering they could admit no change of idea, and their best men, who could not help being original, were struggling against the whole weight of official opposition.

Fig. 30.

Again, such duplication of outworks as we see at Sedan is not geometric fortification. It is a definite attempt to retard the attack, on ground favourable to it, by successive lines of defence. As to the policy of this, no axiom can be laid down. Nowadays most of us think, as Machiavelli did, that a single line of defence is best and that a second line only serves to suggest the advisability of retreat. There are also, of course, the recognized drawbacks of outworks, difficulty of retreat, of relief and so forth, and the moral effect of their loss. But the engineers of such defences as Ostend and Candia might well say, “Oh, if only when we had held on to that bastion for so many months we had had a second and a third line of permanent retrenchment to fall back upon, we could have held the place for ever.” And who shall say that they were wrong? Let us at all events remember that the leading engineers of that time were men who had passed their lives in a state of war, and that we ourselves in comparison with them are the theorists.

From the end of the 16th century the Dutch methods of fortification acquired a great reputation, thanks to the stout resistance offered to the Spaniards by some of their fortresses, the three years’ defence of Ostend being The Dutch school. perhaps the most striking example. Prolonged defences, which were mainly due to the desperate energy of the besieged, were credited to the quality of their defences. In point of fact the Dutch owed more to nature, and more still to their own spirit, than to art; but they showed a good deal of skill in adapting recent ideas to their needs.

Three conditions governed the development of the Dutch works at this time, viz. want of time, want of money and abundance of water. When the Netherlands began their revolt against Spain, they would no doubt have been glad enough of expensive masonry fortresses on such models as Paciotto’s citadel of Antwerp. But there was neither time nor money for such works. Something had to be extemporized, and fortunately for them they had wet ditches to take the place of high revetted walls. Everywhere water was near the surface, and rivers or canals were available for inundations. A wide and shallow ditch, while making a good obstacle, was also the readiest means of obtaining earth for the ramparts. High command was, owing to the flatness of the country, unnecessary and even undesirable, as it did not allow of grazing fire.

What the Dutch actually did in strengthening their towns gives little evidence of system. Starting as a rule from an existing enceinte, sometimes a medieval wall, they would provide a broad wet ditch. No further provision was usually made on the sides of the town which were additionally protected by a river or inundation. On the other sides the wet ditch was made still broader, and sometimes contained a counterguard, sometimes ravelins and lunettes. These were quite irregular in their design and relation to each other. At the foot of the glacis would be found another but narrower wet ditch, which was a peculiarly Dutch feature; and sometimes if the town was in a bend of a river there would be a canal cut across the bend in a straight line, strengthened by several redans.

Speaking generally, they endeavoured to provide for the want